Math, asked by MaitryiJoshi, 11 hours ago

In the figure, ABCD is a parallelogram in which angle A= 60° is if the bisectors of angle A and angle B meet at P, prove that AD=DP,PC=BC and DC=2AB.​

Attachments:

Answers

Answered by Avacadoo
3

ʚHello!ɞ

I hope this helps you :)

AP bisects ∠A

Then, ∠DAP=∠PAB=30  

o

                      ------ ( 1 )

We know that in parallelogram adjacent angles are supplementary

∴  ∠A+∠B=180  

o

 

⇒  60  

o

+∠B=180  

o

 

∴  ∠B=120  

o

.

BP bisects ∠B

Then, ∠PAB=∠PBC=60  

o

            ---- ( 2 )

⇒  ∠PAB=∠APD=30  

o

            [ Alternate angles ]   ---- ( 3 )

∴  ∠DAP=∠APD=30  

o

         [ From ( 1 ) and ( 3 ) ]

∴  AD=DP               [ Since base angles are equal ]

Similarly, ∠PBA=∠BPC=60  

o

              [ Alternate angles ]   --- ( 4 )

⇒  ∠PBC=∠BPC=60  

o

        [ From ( 2 ) and ( 4 ) ]

∴  PC=BC                            [ Since base angles are equal  

⇒  DC=DP+PC

⇒  DC=AD+BC                  [ Since, DP=AD,PC=BC ]

⇒  DC=AD+AD                 [ Opposite sides of parallelogram are equal ]

∴  DC=2AD

-Avacodoo

Answered by Pʀᴀᴠᴇᴇɴ
0

GIVE ME TIME TO SOLVE YOUR QUESTION

I RESPOND YOUR ANSWER AFTER SOMETIME

THANKS

Similar questions