Math, asked by mdkashifsheikh0523, 22 days ago

In the figure, AC = 3 cm, BC = 6 cm and CD = 4 cm. Then sin A + cos B=​

Answers

Answered by MaheswariS
30

\underline{\textbf{Given:}}

\textsf{In figure, AC=3 cm, BC=6 cm}

\textsf{and CD=4 cm}

\underline{\textbf{To find:}}

\textsf{sinA+cosB}

\underline{\textbf{Solution:}}

\mathsf{In\;\triangle\,ACD,}

\mathsf{AD^2=AC^2+CD^2}

\mathsf{AD^2=3^2+4^2}

\mathsf{AD^2=9+16}

\mathsf{AD^2=25}

\mathsf{AD=\sqrt{25}}

\implies\boxed{\mathsf{AD=5\;cm}}

\mathsf{In\;\triangle\,BCD,}

\mathsf{BD^2=BC^2+CD^2}

\mathsf{BD^2=6^2+4^2}

\mathsf{BD^2=36+16}

\mathsf{BD^2=52}

\mathsf{BD=\sqrt{52}}

\implies\boxed{\mathsf{BD=2\sqrt{13}\;cm}}

\mathsf{Now,}

\mathsf{sinA+cosB}

\mathsf{=\dfrac{CD}{AD}+\dfrac{BC}{BD}}

\mathsf{=\dfrac{4}{5}+\dfrac{6}{2\sqrt{13}}}

\mathsf{=\dfrac{4}{5}+\dfrac{3}{\sqrt{13}}}

\mathsf{=\dfrac{4\sqrt{13}+15}{5\sqrt{13}}}

Attachments:
Answered by paddumarri22
2

Step-by-step explanation:

In figure, AC=3 cm, BC=6 cm

In figure, AC=3 cm, BC=6 cm{and CD=4 cm}

Solution..

In△ACD,

AD

AD 2

AD 2 =AC

AD 2 =AC 2

AD 2 =AC 2 +CD

AD 2 =AC 2 +CD 2

AD 2 =AC 2 +CD 2

AD 2 =AC 2 +CD 2 \mathsf{AD^2=3^2+4^2}AD

AD 2 =AC 2 +CD 2 \mathsf{AD^2=3^2+4^2}AD 2

AD 2 =AC 2 +CD 2 \mathsf{AD^2=3^2+4^2}AD 2 =3

AD 2 =AC 2 +CD 2 \mathsf{AD^2=3^2+4^2}AD 2 =3 2

AD 2 =AC 2 +CD 2 \mathsf{AD^2=3^2+4^2}AD 2 =3 2 +4

AD 2 =AC 2 +CD 2 \mathsf{AD^2=3^2+4^2}AD 2 =3 2 +4 2

AD 2 =AC 2 +CD 2 \mathsf{AD^2=3^2+4^2}AD 2 =3 2 +4 2

AD 2 =AC 2 +CD 2 \mathsf{AD^2=3^2+4^2}AD 2 =3 2 +4 2 \mathsf{AD^2=9+16}

=

= 5

= 5 13

= 5 13

= 5 13

= 5 13 4

= 5 13 4 13

= 5 13 4 13

= 5 13 4 13 +15

= 5 13 4 13 +15

is the answer

Similar questions