In the figure, AC = 3 cm, BC = 6 cm and CD = 4 cm. Then sin A + cos B=
Answers
Answered by
30
Attachments:
Answered by
2
Step-by-step explanation:
In figure, AC=3 cm, BC=6 cm
In figure, AC=3 cm, BC=6 cm{and CD=4 cm}
Solution..
In△ACD,
AD
AD 2
AD 2 =AC
AD 2 =AC 2
AD 2 =AC 2 +CD
AD 2 =AC 2 +CD 2
AD 2 =AC 2 +CD 2
AD 2 =AC 2 +CD 2 \mathsf{AD^2=3^2+4^2}AD
AD 2 =AC 2 +CD 2 \mathsf{AD^2=3^2+4^2}AD 2
AD 2 =AC 2 +CD 2 \mathsf{AD^2=3^2+4^2}AD 2 =3
AD 2 =AC 2 +CD 2 \mathsf{AD^2=3^2+4^2}AD 2 =3 2
AD 2 =AC 2 +CD 2 \mathsf{AD^2=3^2+4^2}AD 2 =3 2 +4
AD 2 =AC 2 +CD 2 \mathsf{AD^2=3^2+4^2}AD 2 =3 2 +4 2
AD 2 =AC 2 +CD 2 \mathsf{AD^2=3^2+4^2}AD 2 =3 2 +4 2
AD 2 =AC 2 +CD 2 \mathsf{AD^2=3^2+4^2}AD 2 =3 2 +4 2 \mathsf{AD^2=9+16}
=
= 5
= 5 13
= 5 13
= 5 13
= 5 13 4
= 5 13 4 13
= 5 13 4 13
= 5 13 4 13 +15
= 5 13 4 13 +15
is the answer
Similar questions