Math, asked by Shivani22119, 5 months ago

in the given fi gure, O is centre of the circle. If OP = 13 cm, QP = 24 cm and OR is perpendicular to QP, then

fi nd the length of SR. ​

Attachments:

Answers

Answered by Anonymous
21

\bf \LARGE\color{pink}{Hola!}

GiveN :

\mapsto\sf OP=13\: cm

\mapsto\sf QP=24\: cm

\mapsto\sf OR \:\:is\:\: perpendicular \:\:to \:\:QP

SolutioN :

\sf As \:\:OR\:\:is\:\: perpendicular\:\:to \:\:QP

\therefore \sf \triangle OPS \:\: is \:\:a \:\:right \:triangle \:\:and \:\:S\:\:is \:\:the \:\:mid-pt \:\:of\:\:QP

\sf Hence,

\sf{{PS} }=\frac{{{PQ}}}{2}

\implies \sf {{PS}}=12

Now,

\sf PS^2+SO^2=PO^2\:\:\:\:\:\:\bf [\:Pythagoras\:\: Theorem\:]

\implies \sf 12^2+OS^2=13^2

\sf\implies OS=5

Now,

\sf OP=13\:\:\bf [Given]

hence,

\sf OR=13\:\:\:\bf [∵OR=OP]

\sf\implies OS+SR=13

\sf \implies 5+SR=13

\:\:\:\:\:\:\therefore {\underline{\boxed{\sf SR=8}}}

_______________________

HOPE THIS IS HELPFUL...

Similar questions