Math, asked by jadhavadi047, 9 months ago

In the given figure, ABCD is a
cyclic quadrilateral. ZBDC
50°, ZCAD = 70°. What is the
measure of ZBCD?​

Attachments:

Answers

Answered by ajay8949
2

\huge\underline\red{Given\::-}

  • ABCD is a cyclic quadrilateral.
  • BDC = 50°
  • CAD = 70°

\huge\underline\blue{To\:Find\::-}

  • measure of BCD

\huge\underline\green{Solution\::-}

=> BDC = BAC (angles in the same segment are equal)

=> BAC = 50°

=> BAD = CAD + BAC

=> BAD = 70° + 50°

=> BAD = 120°

As ABCD is a cyclic quadrilateral.

BAD + BCD = 180°

120° + BCD = 180°

BCD = 180° - 120°

\fcolorbox{</em><em>green</em><em>}{</em><em>orange</em><em>}{</em><em>BCD\</em><em>:</em><em>=</em><em>\</em><em>:</em><em>6</em><em>0</em><em>°</em><em>}

please mark as brainliest.....................!

Answered by Misspgl01
2

Given:−

ABCD is a cyclic quadrilateral.

BDC = 50°

CAD = 70°

ToFind:−

measure of BCD

Solution:−

=> BDC = BAC (angles in the same segment are equal)

=> BAC = 50°

=> BAD = CAD + BAC

=> BAD = 70° + 50°

=> BAD = 120°

As ABCD is a cyclic quadrilateral.

BAD + BCD = 180°

120° + BCD = 180°

BCD = 180° - 120°

Similar questions