Math, asked by llcandycanell21, 6 months ago

In the given figure,ABCD is a quadrilateral and tnf are points on a d and c respectively such that AB=CB,∠ABE=∠CBF and ∠EBD=∠FBD.Prove that BE=BF.​

Answers

Answered by bbbhh
0

Answer:

PLs SENd

the figure also

Answered by llAloneSameerll
19

━━━━━━━━━━━━━━━━━━━━━━━━━

\huge{\underline{\underline{\sf{\orange{</p><p>Question:-}}}}}

In the given figure,ABCD is a quadrilateral and tnf are points on a d and c respectively such that AB=CB,∠ABE=∠CBF and ∠EBD=∠FBD.Prove that BE=BF.

━━━━━━━━━━━━━━━━━━━━━━━━━

\huge{\underline{\underline{\sf{\orange{</p><p>Solution:-}}}}}

\angle \: ABE = \angle \: CBF \: and \: \angle \: EBD = \angle \: FBD \\

 ⇒ \angle \: ABE + \angle \: EBD = \angle \: CBF + \angle \: FBD \\

 ⇒ \angle \: ABD = \angle \: CBD \:  \:  \:  \:  \:  \: ..(i)

Now, in ∆ABD and ∆CBD,we have

AB = CB \:  \:  \:  \: (given)

\angle \: ABD = \angle \: CBD \:  \:  \: (from \: (i))

BD = BD \:  \:   \:  \:  \:  \:  \:  \: \: (common)

\therefore \: \triangle \: ABD \: \cong \: \triangle \: CBD \:  \:  \: (sas - criteria) \\

\therefore \: \angle \: BAD = \angle \: BCD \:  \:  \: (c.p.c.t). \\

 ⇒ \angle \: BAE = \angle \: BCF. \:  \:  \:  \:  \:  \: ...(ii)

Now, in ∆ABE and ∆CBF,we have

AB = CB \:  \:  \: (given)

\angle \: ARE = \angle \: CBF \:  \:  \: (given) \\

\angle \: BAE = \angle \: BCF \:  \:  \: [proved \: in \: (ii)] \\

\therefore\triangle \: ABE \: \cong \: \triangle \: CBF \:  \:  \: (aas - criteria) \\

Hence,BE = BF.

━━━━━━━━━━━━━━━━━━━━━━━━━

Attachments:
Similar questions