In the given figure,
AD=DB = DE
angle EAC=angle FAC and
angle F=90°
Prove that angleAEB=90°
∆ACG is isosceles.
Answers
Answer:
Angle aeb is equal to 90 bcs.
Step-by-step explanation:
Ed is prependicular on line ab
Answer:
Correct option is
A
True
In △DBE,
DB=BE
Hence, ∠DBE=∠DEB=x ....(I)
In △DAE,
DA=AE
Hence, ∠DAE=∠DEA=y ...(II)
Now, In △ABE,
∠ABE+∠BAE+∠AEB=180
∘
(Sum of angles of triangle)
∠ABE+∠BAE+∠BED+∠DEA=180
∘
x+x+y+y=180
∘
x+y=90
∘
∠DEB+∠DEA=90
∘
∠AEB=90
∘
Hence, ∠AEB=∠AEC=90
∘
In △AEF,
Sum of angles=180
∘
∠AEF+∠EAF+∠EFA=180
∘
∠AEF+∠EAF+90
∘
=180
∘
∠AEF=90
∘
−∠EAF
We know, ∠AEC=90
∘
∠AEF+∠FEC=90
∘
90
∘
−∠EAF+∠FEC=90
∘
or ∠EAF=∠FEC
Now, In △CEA,
Sum of angles =180
∘
∠AEC+∠EAC+∠ACE=180
∘
∠ACE=90
∘
−∠EAC ..(III)
Now, in △GCE
Sum of angles=180
∘
∠GCE+∠GEC+∠CGE=180
∘
(90
∘
−∠EAC)+2∠EAC+∠CGE=180
∘
∠GCE=90
∘
−∠EAC ...(IV)
hence, from III and IV,
∠GCE=∠ACE
or GCE is an Isosceles triangle