In the given figure if DEFG is a square and ∠BAC= 90° , then show that DE² = BD × EC.
Attachments:
Answers
Answered by
1
Answer:
bjzzzzzzzzzzzzzzzzzxzzzzz
Answered by
11
Answer:
In ∆ AFG & ∆DBG
∠GAF = ∠BDG [ 90°]
∠AGF = ∠DBG [corresponding angles because GF|| BC and AB is the transversal]
∆AFG ~ ∆DBG [by AA Similarity Criterion] …………(1)
In ∆ AGF & ∆EFC
∠AFG = ∠CEF [ 90°]
∠AFG = ∠ECF [corresponding angles because GF|| BC and AC is the transversal]
∆AGF ~ ∆EFC [by AA Similarity Criterion] …………(2)
From equation 1 and 2.
∆DBG ~ ∆EFC
BD/EF = DG /EC
BD/DE = DE /EC [ DEFG is a square]
DE² = BD × EC .
HOPE THIS WILL HELP YOU....
Similar questions