in triangle abc,/a=50° and the external bisectors of/b and/ceet at o .what is the measure of triangle boc
Answers
Answered by
1
Answer:
In △ABC,
∠ABC+∠ACB+∠BAC=180
∠ABC+70+50=180
∠ABC=60
∘
∠OCB=
2
1
(180−∠ACB)
∠OCB=
2
1
(180−50)
∠OCB=65
∘
∠OBC=
2
1
(180−∠ABC)
∠OBC=
2
1
(180−60)
∠OBC=60
∘
In △OBC,
∠OCB+∠OBC+∠BOC=180
65+60+∠BOC=180
∠BOC=180−125
∴∠BOC=55
∘
Similar questions