In triangle abc, ad bisects angle a and angle c greater than angle
b. prove that angle adb greater than angke abc
Answers
Answer:
The proof is explained step-wise below :
Step-by-step explanation:
Given : m∠C > m∠B and AD bisects ∠A
To Prove : m∠ADB > m∠ABC
Proof : Since m∠C > m∠B
⇒ m∠ACB > m∠ABC
⇒ m∠ACB + m∠CAD > m∠ABC + m∠BAD .....(1)
(AD bisects ∠A ⇒m∠CAD = m∠BAD )
In ΔABD,
m∠ABC + m∠BAD + m∠ADB = 180°
Therefore, m∠ABC + m∠BAD = 180° – ∠ADB ....(2)
In ΔACD,
m∠ACD + m∠CAD + m∠ADC = 180°
Therefore, m∠ACB + m∠CAD = 180° – m∠ADC ....(3)
From (1), (2) and (3), we get
180° – m∠ADC > 180° – m∠ADB
⇒ m∠ADB – m∠ADC > 180° – 180°
⇒ m∠ADB – m∠ADC > 0
⇒ m∠ADB > m∠ADC
Hence proved.
"In ΔABC,
∠C > ∠B (Given)
∴ ∠ACB > ∠ABC
⇒ ∠ACB + ∠2 > ∠ABC + ∠1 .....(1) (AD bisects ∠A ⇒∠1 = ∠2)
In ΔABD,
∠ABC + ∠1 + ∠ADB = 180°
∴ ∠ABC + ∠1 = 180° – ∠ADB ....(2)
In ΔACD,
∠ACD + ∠2 + ∠ADC = 180°
∴ ∠ACB + ∠2 = 180° – ∠ADC ....(3)
From (1), (2) and (3), we get
180° – ∠ADC > 180° – ∠ADB
∴ ∠ADB – ∠ADC > 180° – 180°
⇒ ∠ADB – ∠ADC > 0
⇒ ∠ADB > ∠ADC
Hence proved."