In triangle abc d is a median then show that ab2+ac2=2(ad2+bd2)
Answers
Answered by
1
From right triangle ABE
(AB)²=(AE)²+(BE)² ..................................(1)
From right triangle ACE
(AC)²=(AE)²+(EC)² .................................(2)
From right triangle ADE
(AD)²=(AE)²+(ED)² .................................(3)
Adding equation (1) & (2)
(AB)²+(AC)²=(AE)²+(BE)²+(AE)²+(EC)²
(AB)²+(AC)²=2(AE)²+(BE)²+(EC)²
(AB)²+(AC)²=2(AE)²+(BD-ED)²+(ED+DC)²
(AB)²+(AC)²=2(AE)²+(BD)²+(ED)²-2(DB)(ED)+(ED)²+(DC)²+2(ED)(DC)
(::DC=BD)
(AB)²+(AC)²=2(AE)²+2(ED)²+(BD)²+(BD)²-2(BD)(ED)+2(ED)(BD)
From equation (3)
(AB)²+(AC)²=2(AD)²+2(BD)²
(AB)²+(AC)²=2(AD²+BD²)
HENCE PROOVED.
HOPE THIS WILL HELP YOU.
Similar questions