Math, asked by pranavanshukapoor, 9 months ago

In triangle PQR, right angled at Q PR+QR =25 cm and PQ= 5cm. Determine the values

of sin P, cos P and tan P​

Answers

Answered by alibarmawer
10

Answer:

Given PR + QR = 25 , PQ = 5

PR be x.  and QR = 25 - x 

Pythagoras theorem ,PR2 = PQ2 + QR2

x2 = (5)2 + (25 - x)2

x2 = 25 + 625 + x2 - 50x

50x = 650

x = 13

 

 PR = 13 cm

QR = (25 - 13) cm = 12 cm

sin P = QR/PR = 12/13

cos P = PQ/PR = 5/13

tan P = QR/PQ = 12/5 

Answered by Disha976
4

 \rm { Given \: that, }

  •  \rm { PR + QR = 25}
  •  \rm { PQ = 5 }

_____

 \rm { Let \: PR \:  be \: x.</p><p>}

 \rm { \therefore QR = 25 - x</p><p> }

Applying Pythagoras theorem in ΔPQR, we obtain,

 \rm\blue { {PR}^{2} = {PQ}^{2} + {QR}^{2} }

 \rm{ \leadsto {x}^{2} = {(5)}^{2} + {(25-x)}^{2} }

 \rm{ \leadsto \cancel { {x}^{2}} = 25 + 625 \cancel { + {x}^{2}} - 50x }

 \rm{ \leadsto 50x = 650</p><p> }

 \rm{ \leadsto x = \cancel {\dfrac{650}{50}</p><p>}=13cm }

 \rm\red { \therefore, PR = 13 cm</p><p>}

 \rm\red { QR = (25 - 13) cm = 12 cm }

______

Now, the values of sin P, cos P and tan P

 \rm { sin \: P =\dfrac{ side \: opposite \: to \:  \angle P}{Hypotenuse} = \dfrac{12}{13} }

 \rm { cos \: P = \dfrac{ side \: adjacent \: to \:  \angle P}{Hypotenuse} = \dfrac{5}{13} }

 \rm { tan \:  P= \dfrac{ side \: opposite \: to \:  \angle P}{side \: adjacent \: to \:  \angle P } = \dfrac{12}{5} }

Similar questions