in triangleABC,AD|AC,AB=7.5cm,AC=100cm,AD=6cm.FindBC. so that angle BAC=90°
Answers
Step-by-step explanation:
Given,
In \triangle ABC△ABC where AD\perp BC,AB=7.5\ cm,AC=10\ cm\ and\ AD=6\ cmAD⊥BC,AB=7.5 cm,AC=10 cm and AD=6 cm
From figure,
\angle ADB=\angle ADC=90\ degree∠ADB=∠ADC=90 degree
In \triangle ABD△ABD ,
AB^{2}=AD^{2}+BD^{2}AB
2
=AD
2
+BD
2
⇒AB^{2}-AD^{2}=BD^{2}AB
2
−AD
2
=BD
2
⇒(7.5)^{2}-6^{2}=BD^{2}(7.5)
2
−6
2
=BD
2
⇒BD=\sqrt{56.25-36}BD=
56.25−36
⇒BD=\sqrt{20.25}BD=
20.25
⇒BD=4.5\ cmBD=4.5 cm
In \triangle ACD△ACD ,
CD=\sqrt{AC^{2}-AD^{2} }CD=
AC
2
−AD
2
⇒CD=\sqrt{10^{2}-6^{2} }CD=
10
2
−6
2
⇒DC=8\ cmDC=8 cm
∴ BC=BD+CD=4.5+8=12.5\ cmBC=BD+CD=4.5+8=12.5 cm
From \triangle ABC△ABC ,
BC=\sqrt{AB^{2}+AC^{2} }BC=
AB
2
+AC
2
⇒BC=\sqrt{7.5^{2}+10^{2} }BC=
7.5
2
+10
2
⇒BC=12.5\ cmBC=12.5 cm
So, The value of BC=12.5\ cmBC=12.5 cm and \angle BAC=90\ degree∠BAC=90 degree in \triangle ABC△ABC .
Answer:
- =
Step-by-step explanation:
In the figure, ABC is a right-angled triangle
Here,
➙ AD AC or, ∠ADC = 90°
➙ ∠BAC = 90°
→ AC = 100cm.
→ AD = 6cm.
→ BC = ?
To find we'll use the ‘Pythagoras theorem’ in the triangle ABC
Where,
→ h = hypotenuse
→ b = base
→ p = perpendicular
We have,
→ BC (hypotenuse)
→ AB (base) = 7.5cm
→ AC (perpendicular) = 10cm.
We can say that,
⇒ BC² = AB² + AC²
⇒ BC² = 7.5² + 10²
⇒ BC² = 56.25 + 100
⇒ BC² = 156.25
⇒ BC = √156.25
⇒ BC = 12.5cm
BC measures 12.5 cm.