Integral 1/x(log x)²
Answers
Solution:
Given Integral:
We will solve this problem by substitution method.
Let us assume that:
So, the integral changes to:
Now, we know that:
So, we get:
Substituting back u = ln(x), we get:
Which is our required answer.
Learn More:
Explanation:
Given Integral:
\displaystyle \tt \longrightarrow I = \int \frac{dx}{x \: ln^{2}(x)}⟶I=∫
xln
2
(x)
dx
We will solve this problem by substitution method.
Let us assume that:
\tt \longrightarrow u =ln(x)⟶u=ln(x)
\tt \longrightarrow du = \dfrac{dx}{x}⟶du=
x
dx
So, the integral changes to:
\displaystyle \tt \longrightarrow I = \int \frac{du}{u^{2}}⟶I=∫
u
2
du
Now, we know that:
\displaystyle \tt \longrightarrow\int {u}^{n} \: du = \dfrac{ {u}^{n + 1} }{n + 1} + C⟶∫u
n
du=
n+1
u
n+1
+C
So, we get:
\displaystyle \tt \longrightarrow I = \dfrac{ - 1}{u} + C⟶I=
u
−1
+C
Substituting back u = ln(x), we get:
\displaystyle \tt \longrightarrow I = \dfrac{ - 1}{ln(x)} + C⟶I=
ln(x)
−1
+C
Which is our required answer.
please mark me as brainliest