Integrate 1/sinx(5-4cosx)
Answers
Answered by
5
Integrate: (5-4 cos x) / sin x dx
I = integral [ 5 * (1 - cos x) / sin x ] dx + integral [ cos x/ sinx ] dx
= 5* Integral 2 sin² x/2 / (2 sin x/2 cos x/2) dx + integral cotx dx
= 5 * 2* Ln Sec x/2 + Ln sin x + K
================
If the integral is like:
f(x) = 1/ [ sin x * (5- 4 cos x) ]
Let cos x = t, dx = -dt /√(1-t²)
f(t) = - dt / [ (1-t^2) * (5 -t) ]
= 1/24 * 5 dt/(1-t^2) - 1/24 * t dt /(1- t^2) + 1/24 * dt /(5-t)
Integral = 5/48 * Ln [(1+t)/(1-t) ] + 1/48 * Ln (1-t^2) - 1/24 * Ln | 5-t | + K
= 5/24 * Cot x/2 + 1/24 * Ln | sin x | - 1/24 * Ln (5 - cosx ) + K
I = integral [ 5 * (1 - cos x) / sin x ] dx + integral [ cos x/ sinx ] dx
= 5* Integral 2 sin² x/2 / (2 sin x/2 cos x/2) dx + integral cotx dx
= 5 * 2* Ln Sec x/2 + Ln sin x + K
================
If the integral is like:
f(x) = 1/ [ sin x * (5- 4 cos x) ]
Let cos x = t, dx = -dt /√(1-t²)
f(t) = - dt / [ (1-t^2) * (5 -t) ]
= 1/24 * 5 dt/(1-t^2) - 1/24 * t dt /(1- t^2) + 1/24 * dt /(5-t)
Integral = 5/48 * Ln [(1+t)/(1-t) ] + 1/48 * Ln (1-t^2) - 1/24 * Ln | 5-t | + K
= 5/24 * Cot x/2 + 1/24 * Ln | sin x | - 1/24 * Ln (5 - cosx ) + K
kvnmurty:
click on red hearts thanks button above pls
Similar questions
Political Science,
8 months ago
Social Sciences,
8 months ago
Math,
8 months ago
Physics,
1 year ago
Chemistry,
1 year ago
Science,
1 year ago
Math,
1 year ago
Hindi,
1 year ago