integrate 1/√(x^2+4x+10) dx
Answers
Answered by
2
Explanation:
∫ x 2 +4x+105x+3 d5x+3
=A dxd (x 2 +4x+10)+B
⇒5x+3=A(2x+4)+B
⇒5x+3=2Ax+4A+B
on comparing both sides we get
2A=5⇒A= 25
and 4A+B=3⇒4× 2 +B=3⇒B=−7
so, ∫ x 2 +4x+10
5x+3
dx= 25
∫ x 2 +4x+10
(2x+4) dx−7∫ x 2 +4x+10dx
Putting x 2 +4x+10=t
⇒(2x+4)dx=dt
= 25
∫ tdt −7∫ x 2 +4x+4+6dx
= 25 ×2 t −7∫ (x+2) 2 +( 6 ) 2dx
=5 x 2 +4x+10 −7log
x+2+ x 2 +4x+10∣∣ +c ...................
∫ a 2 +x 1 dx=log∣x+ a 2 +x 2 ∣+c
Similar questions