Math, asked by piyushkumar2526, 1 year ago

Integrate it using properties of definite integrals
PLS DO THIS, PLS

Attachments:

Answers

Answered by MaheswariS
0

Answer:

\int\limits^a_0{\frac{\sqrt{x}}{\sqrt{x}+\sqrt{a-x}}}\,dx=\frac{a}{2}

Step-by-step explanation:

I think your question may be

\int\limits^a_0{\frac{\sqrt{x}}{\sqrt{x}+\sqrt{a-x}}}\,dx

\text{Let }I=\int\limits^a_0{\frac{\sqrt{x}}{\sqrt{x}+\sqrt{a-x}}}\,dx.....(1)

\text{Using the property}

\boxed{\bf\int\limits^a_0{f(x)}\,dx=\int\limits^a_0{f(a-x)}\,dx}

I=\int\limits^a_0{\frac{\sqrt{a-x}}{\sqrt{a-x}+\sqrt{a-(a-x)}}}\,dx

I=\int\limits^a_0{\frac{\sqrt{a-x}}{\sqrt{a-x}+\sqrt{x}}}\,dx

I=\int\limits^a_0{\frac{\sqrt{a-x}}{\sqrt{x}+\sqrt{a-x}}}\,dx........(2)

\text{Adding (1) and (2)}

2I=\int\limits^a_0{\frac{\sqrt{x}}{\sqrt{x}+\sqrt{a-x}}}\,dx+\int\limits^a_0{\frac{\sqrt{a-x}}{\sqrt{x}+\sqrt{a-x}}}\,dx

\text{combining the integrals, we get}

2I=\int\limits^a_0[\frac{\sqrt{x}}{\sqrt{x}+\sqrt{a-x}}+\frac{\sqrt{a-x}}{\sqrt{x}+\sqrt{a-x}}]dx

2I=\int\limits^a_0\frac{\sqrt{x}+\sqrt{a-x}}{\sqrt{x}+\sqrt{a-x}}\,dx

2I=\int\limits^a_0\,dx

2I=[x]^a_0

2I=a

\implies\bf\,I=\frac{a}{2}

Answered by silu12
0

Answer:

Hope it will help you ☺️

Attachments:
Similar questions