Math, asked by shreya7716, 5 months ago

integrate sec inverse x​

Answers

Answered by Anonymous
7

Given Integrand,

 \displaystyle \sf  \int  {sec}^{  - 1} x \:  dx

Integrating by parts,

 \longrightarrow \displaystyle \sf  {sec}^{  - 1} x \int dx -  \int \bigg( \dfrac{d( {sec}^{ - 1}x) }{dx}  \int dx \bigg) dx \\  \\  \longrightarrow \displaystyle \sf x {sec}^{  - 1} x -  \int  \dfrac{x}{ |x|  \sqrt{ {x}^{2}  - 1}} dx \\  \\   \longrightarrow \displaystyle \sf x {sec}^{  - 1} x -  \int  \frac{dx}{ \sqrt{ {x}^{2}  - 1}}  \\  \\    \longrightarrow \displaystyle  \boxed{ \boxed{\sf x {sec}^{  - 1} x -  ln(x +  \sqrt{ {x}^{2} }  + 1)  + c}}

Formula Used :

Let x be an independent function and u & v be dependent function which are to be integrated. In accordance with ILATE,

 \bullet  \: \boxed{ \boxed{ \displaystyle \sf  \int uv \:  dx = u \int v \: dx -  \int \bigg( \dfrac{du}{dx}  \int vdx \bigg)dx \: }}

Similar questions
Math, 11 months ago