Math, asked by shareennisha9156, 1 year ago

integrate.sin^3(root x)?

Answers

Answered by sprao534
33

Please see the attachment

Attachments:
Answered by dk6060805
13

Use sin 3t = 3sint - 4sin^3t

Step-by-step explanation:

\int sin^3\sqrt x dx put \sqrt x = t

\frac {1}{2\sqrt x} = \frac {dt}{dx}

dx = 2t dt

2\int sin^3t dt

we know that, sin 3t = 3sint - 4sin^3t

sin^3t = \frac {3sint - sin3t}{4}

= 2\int t\frac{3sint - sin3t}{4}dt

= \frac {3}{2} \int tsintdt - \frac {1}{2}\int tsin3t dt

= \frac {3}{2} [t(-cost)-\int(-cost)dt]-\frac {1}{2}[t(\frac {-cos3t}{3})-\int (-\frac {-cos3t}{3})dt]

= \frac {3}{2} [-tcost + sint] - \frac {1}{2}[-\frac {-tcos3t}{3}+\frac {1}{3}\frac {sin3t}{3}]+C

= \frac {3}{2} [-tcost + sint] + \frac {1}{6}[tcos3t-\frac {sin3t}{3}]+C

= \frac {3}{2}\sqrt xcos\sqrt x -\frac {3}{2}sin \sqrt x + \frac {1}{6}[\sqrt xcos3\sqrt x - \frac {sin3\sqrt x}{3}] + C

Similar questions