Math, asked by Okhey, 11 hours ago

Integrate :

\int\limits_{​ }^{​}​( ln(lnx) + \frac{1}{ {ln}^{2}x }) ​\,​ dx

Answers

Answered by mathdude500
12

Given Question is

 \displaystyle \int \rm \: \bigg(ln(ln \: x) + \dfrac{1}{ {(ln \: x)}^{2} }  \bigg)  \: dx

\large\underline{\sf{Solution-}}

Given integral is

 \displaystyle \int \rm \: \bigg(ln(ln \: x) + \dfrac{1}{ {(ln \: x)}^{2} }  \bigg)  \: dx

To evaluate this integral, we use method of Substitution.

So, Substitute

\rm \: ln \: x = y

\rm\implies \:x =  {e}^{y}

\rm\implies \:dx =  {e}^{y} \: dy

So, above integral can be rewritten as

\rm \:  =  \: \displaystyle \int \rm \: \bigg(ln(y) + \dfrac{1}{ {y}^{2} } \bigg)  {e}^{y} \: dy \\

can be further rewritten as

\rm \:  =  \: \displaystyle \int \rm \: \bigg(ln(y) +  \frac{1}{y} -  \frac{1}{y} + \dfrac{1}{ {y}^{2} } \bigg)  {e}^{y} \: dy \\

\rm \:  =  \: \displaystyle \int \rm \: \bigg(ln(y) + \dfrac{1}{y} \bigg) {e}^{y} \: dy \:  -  \: \displaystyle \int \rm \: \bigg(\dfrac{1}{y}  - \dfrac{1}{ {y}^{2} } \bigg) {e}^{y} \: dy

We know,

\boxed{\tt{\displaystyle \int \rm \: {e}^{x}(f(x) + f'(x)) \: dx \:  =  \:  {e}^{x}f(x) + c \: }} \\

So, using this, we get

\rm \:  =  \:  {e}^{y}ln(y) - {e}^{y}\dfrac{1}{y}  + c

\rm \:  =  \:  {e}^{y}\bigg(ln(y) - \dfrac{1}{y}\bigg) + c

\rm \:  =  \:  x\bigg(ln(ln \: x) - \dfrac{1}{ {e}^{x} }\bigg) + c

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Formula Used

\boxed{\tt{ \dfrac{d}{dx}ln(x) =  \frac{1}{x} \: }} \\

\boxed{\tt{ \dfrac{d}{dx} \frac{1}{x}  =  \frac{ - 1}{ {x}^{2} } \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Answered by savitasharwan
0

Answer:

119

Down vote

Accepted

Put x=tanθ, then your integral transforms to

I=∫π/40log(1+tanθ) dθ.(1)

Now using the property that

∫a0f(x) dx=∫a0f(a−x) dx,

we have

I=∫π/40log(1+tan(π4−θ)) dθ=∫π/40log(21+tanθ) dθ.(2)

Adding (1) and (2) we get

2I=∫π/40log(2) dθ⇒I=log(2)⋅π8.

Similar questions