Math, asked by BrainlyHelper, 1 year ago

integrate the function [1/sec²x(1 - tanx)²].dx

Answers

Answered by rohitkumargupta
10
HELLO DEAR,

it seems there is typing mistake
the correct question is:
integrate the function [sec²x/(1 - tanx)²].dx

now,
given function is \bold{\int{sec^2x/(1 + tanx)^2}\,dx}

let (1 - tanx) = t \bold{\Rightarrow dt/dx = -sec^2x}

\bold{\Rightarrow dx = -dt/sec^2x}

so, \bold{\Rightarrow \int{sec^x/(1 - tanx)^2}*dt/(-sec^2x)}

\bold{\Rightarrow -\int{1/t^2}}

\bold{\Rightarrow 1/t + c}

put the value of t in above function.

\bold{\Rightarrow 1/(1 + tanx) + c}

I HOPE ITS HELP YOU,
THANKS
Similar questions