Math, asked by BrainlyHelper, 1 year ago

integrate the function x/√(x + 4).dx , x>0

Answers

Answered by abhi178
1
\bf{I=\int{\frac{x}{\sqrt{x+4}}}\,dx}

(x + 4) = t =>x = t - 4 --------(1)

differentiate both sides,

dx = dt -------(2)

put equations (1) and (2) in I,

I = \bf{\int{\frac{t-4}{\sqrt{t}}}\,dt}

= \bf{\int{\frac{t}{\sqrt{t}}}\,dt-4\int{\frac{1}{\sqrt{t}}}\,dt}

=\bf{\int{t^{1/2}}\,dt-4\int{t^{-1/2}}\,dt}

=\bf{\frac{t^{1/2+1}}{1/2+1}-4\frac{t^{-1/2+1}}{-1/2+1}+C}

=\bf{\frac{2}{3}t\sqrt{t}-8\sqrt{t}+C}

put t = (x + 4)

therefore, I = \bf{\frac{2}{3}(x+4)\sqrt{x+4}-8\sqrt{x+4}+C}
Similar questions