Math, asked by adarsh2497, 1 year ago

Integration 1/1+cotx​


brunoconti: resend for a fantastic solution

Answers

Answered by kritarth24
4

I hope I understand...

Attachments:
Answered by Swarup1998
10
\underline{\textsf{Solution :}}

\boxed{\textsf{Method - 1}}

\mathsf{Now,\:\frac{1}{1+cotx}}

\mathsf{=\frac{1-cotx}{(1+cotx)(1-cotx)}}

\mathsf{=\frac{1-cotx}{cosec^{2}x}}

\mathsf{=\frac{1}{cosec^{2}x}-\frac{cotx}{cosec^{2}x}}

\mathsf{=sin^{2}x-\dfrac{\frac{cosx}{sinx}}{\frac{1}{sin^{2}x}}}

\mathsf{=sin^{2}x-cosx\:sinx}

\mathsf{=\frac{1}{2}(2sin^{2}x)-\frac{1}{2}(2sinx\:cosx)}

\mathsf{=\frac{1}{2}(1-cos2x)-\frac{1}{2}sin2x}

\mathsf{=\frac{1}{2}-\frac{1}{2}cos2x-\frac{1}{2}sin2x}

\textsf{On integration, we get}

\mathsf{\int \frac{dx}{1+cotx}}

\mathsf{=\frac{1}{2} \int dx-\frac{1}{2}\int cos2x\:dz-\frac{1}{2}\int sin2x\:dx}

\mathsf{=\frac{1}{2}x-\frac{1}{4}sin2x+\frac{1}{4}cos2x+C}

\textsf{where C is integral constant}

\to \small{\mathsf{\int \frac{dx}{1+cotx} = \frac{1}{2}x-\frac{1}{4}sin2x+\frac{1}{4}cos2x+C}}

\boxed{\textsf{Method - 2}}

\mathsf{Now,\:\frac{1}{1+cotx}}

\mathsf{=\dfrac{1}{1+\frac{cosx}{sinx}}}

\mathsf{=\frac{sinx}{sinx+cosx}}

\mathsf{=\dfrac{2\:sin\frac{x}{2}\:cos\frac{x}{2}}{sin^{2}\frac{x}{2}+cos^{2}\frac{x}{2}+cos^{2}\frac{x}{2}-sin^{2}\frac{x}{2}}}

\mathsf{=\dfrac{2\:sin\frac{x}{2}\:cos\frac{x}{2}}{2\:cos^{2}\frac{x}{2}}}

\mathsf{=tan\frac{x}{2}}

\textsf{On integration, we get}

\mathsf{\int \frac{dx}{1+cotx}}

\mathsf{=\int tan\frac{x}{2}\:dx}

\mathsf{=2\:log|sec\frac{x}{2}|+C}

\textsf{where C is integral constant}

\to \mathsf{\frac{dx}{1+cotx}=2\:log|sec\frac{x}{2}|+C}

skh2: perfect Answer
Swarup1998: :)
Similar questions