Math, asked by thotaparavallika, 8 months ago

integration.cotx ×dx÷1+sin square x=​

Answers

Answered by Anonymous
1

∫cot(x)1+sin2(x)dx

cot(x)=cos(x)sin(x)

So lets put that into the integral:

=∫cos(x)sin(x)1+sin2(x)dx

=∫cos(x)sin(x)(1+sin2(x))dx

Lets multiply everything by: sin(x)sin(x)

=∫cos(x)sin(x)(1+sin2(x))⋅sin(x)sin(x)dx

=∫cos(x)sin(x)sin2(x)(1+sin2(x))dx

Suppose u=sin2(x)+1, thus dudx=2sin(x)cos(x)

du=2sin(x)cos(x)dx

dx=du2sin(x)cos(x)

=∫cos(x)sin(x)sin2(x)(1+sin2(x))dx

=∫cos(x)sin(x)(sin2(x)+1−1)(1+sin2(x))dx

=∫12(u−1)(u)du

=12∫1u(u−1)du

Lets now use partial fraction decomposition to split the fraction into two fractions which can be integrated easily:

1u(u−1)=Au+Bu−1

1u(u−1)=Au⋅u−1u−1+Bu−1⋅uu

1u(u−1)=Au−Au(u−1)+Buu(u−1)

1u(u−1)=Au−A+Buu(u−1)

1=Au−A+Bu

1=u(A+B)−A

A+B=0∧A=−1

−1+B=0

B=1

Now we know:

1u(u−1)=−1u+1u−1

Lets put it back into the integral:

=12∫1u(u−1)du

=12∫−1u+1u−1du

=12∫1u−1−1udu

=12∫1u−1du−12∫1udu

=12ln∣∣u−1∣∣−12ln∣∣u∣∣+C

Lets put back u=sin2(x)+1

=12ln∣∣sin2(x)+1−1∣∣−12ln∣∣sin2(x)+1∣∣+C

=12ln∣∣sin2(x)∣∣−12ln∣∣sin2(x)+1∣∣+C

=2⋅12ln∣∣sin(x)∣∣−12ln∣∣sin2(x+1∣∣+C

=ln∣∣sin(x)∣∣−12ln∣∣sin2(x)+1∣∣+C

Kindly follow me and thank my answers,mark brainliest.

Similar questions