Math, asked by MANISHAKUMARI03, 5 months ago

integration of dx/a^2+x^2 limit from 0 to infinite​

Answers

Answered by mathdude500
3

\begin{gathered}\Large{\bold{\pink{\underline{Formula \:  Used \::}}}}  \end{gathered}

 \boxed{ \pink{:\implies \tt \:  \int\: \dfrac{dx}{ {x}^{2} +  {a}^{2}  } dx = \dfrac{1}{a}  {tan}^{ - 1} \dfrac{x}{a}  + c}}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

─━─━─━─━─━─━─━─━─━─━─━─━─

:\implies \tt \:  \int_0^ \infty \: \dfrac{dx}{ {x}^{2} +  {a}^{2}  } dx

:\implies \tt \:  \dfrac{1}{a} \bigg [  {tan}^{ - 1} \dfrac{x}{a} \bigg]_0^ \infty

:\implies \tt \:  \dfrac{1}{a} ( {tan}^{ - 1}  \infty \:  -  \:  {tan}^{ - 1} 0)

:\implies \tt \:  \dfrac{1}{a} \:  (\dfrac{\pi}{2}  - 0)

:\implies \tt \:  \dfrac{\pi}{2a}

─━─━─━─━─━─━─━─━─━─━─━─━─

 \boxed {\pink{ :\implies \tt \:  \int_0^ \infty \: \dfrac{dx}{ {x}^{2} +  {a}^{2}  } dx = \dfrac{\pi}{2a} }}

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions