integration of dx/(x^2+a^2)^3/2
Answers
Answered by
0
X= a tany …………… (1)
So, dx= a sec^2 y dy
Placing these values in the problem,without integration,
asec^2y dy/ (a^2 tan^2y+ a^2)^(3/2)
= asec^2y dy/ [ a^2 {tan^2y + 1} ]^(3/2)
= asec^2y dy/( asecy)^3
= asec^2y dy/ a^3 sec^3y
= dy / a^2 secy
= 1/a^2 (dy/ secy )
= 1/a^2 ( cosy dy)
So finally ,
Integration of dx/[ (x^2 + a^2 )^(3/2) ]
= 1/a^2 . integration of (cosy . dy )
= 1/ a^2 sin y + c …………. (2)
Now from the equation (1),
x = a tany
Or , tany = x/a
Or, tan^2 y = x^2 / a^2
Or, sec^2y = 1 + (x^2 / a^2)
Or , cos^2y = a^2 /( x^2 + a^2)
Or, sin^2 y = 1 - {a^2/ (x^2 + a^2)}
Or , sin^2 y = x^2 / (x^2+ a^2)
Or, siny = x/ [(x^2+ a^2)^(1/2)] .
So from the equation (2) ,
Integration of dx / [ ( x^2+ a^2)^(3/2) ]
= x/ [a^2 . ( x^2+ a^2)^(1/2) ] + c
Hope this may help u
So, dx= a sec^2 y dy
Placing these values in the problem,without integration,
asec^2y dy/ (a^2 tan^2y+ a^2)^(3/2)
= asec^2y dy/ [ a^2 {tan^2y + 1} ]^(3/2)
= asec^2y dy/( asecy)^3
= asec^2y dy/ a^3 sec^3y
= dy / a^2 secy
= 1/a^2 (dy/ secy )
= 1/a^2 ( cosy dy)
So finally ,
Integration of dx/[ (x^2 + a^2 )^(3/2) ]
= 1/a^2 . integration of (cosy . dy )
= 1/ a^2 sin y + c …………. (2)
Now from the equation (1),
x = a tany
Or , tany = x/a
Or, tan^2 y = x^2 / a^2
Or, sec^2y = 1 + (x^2 / a^2)
Or , cos^2y = a^2 /( x^2 + a^2)
Or, sin^2 y = 1 - {a^2/ (x^2 + a^2)}
Or , sin^2 y = x^2 / (x^2+ a^2)
Or, siny = x/ [(x^2+ a^2)^(1/2)] .
So from the equation (2) ,
Integration of dx / [ ( x^2+ a^2)^(3/2) ]
= x/ [a^2 . ( x^2+ a^2)^(1/2) ] + c
Hope this may help u
Similar questions