integration of
![( {x}^{3 } - 3x + 1) \div ( \sqrt{1 - {x}^{2} } ) \: dx ( {x}^{3 } - 3x + 1) \div ( \sqrt{1 - {x}^{2} } ) \: dx](https://tex.z-dn.net/?f=%28+%7Bx%7D%5E%7B3+%7D++-+3x+%2B+1%29+%5Cdiv+%28+%5Csqrt%7B1+-++%7Bx%7D%5E%7B2%7D+%7D+%29+%5C%3A+dx)
Answers
Answered by
2
Answer:
Step-by-step explanation:
Put x = sin u.
Then:
- dx = cos u du
- √(1-x²) = cos u
- x³-3x+1 = 1 - (3-x²)x = 1 - (2+cos²u)sin u = 1 - 2 sin u - cos² u sin u
Putting these together, the integral is
Similar questions