Math, asked by TheBiGHeaD, 1 year ago

integration of x³/((x-1)*(x²+1))

Answers

Answered by jeffandtammy
0

Let =∫3(−1)(2+1)

I

=

x

3

(

x

1

)

(

x

2

+

1

)

d

x


=∫3−1+1(−1)(2+1)

=

x

3

1

+

1

(

x

1

)

(

x

2

+

1

)

d

x


=∫(−1)(2++1)(−1)(2+1)+∫1(−1)(2+1)1

=

(

x

1

)

(

x

2

+

x

+

1

)

(

x

1

)

(

x

2

+

1

)

d

x

+

1

(

x

1

)

(

x

2

+

1

)

d

x

I

1


=∫2++12+1+1

=

x

2

+

x

+

1

x

2

+

1

d

x

+

I

1


=∫+∫2+12+1

=

d

x

+

x

x

2

+

1

d

x

I

2

+

I

1


=+2+1

=

x

+

I

2

+

I

1


Lets solve the easiest first


So, 2=∫22(2+1)

I

2

=

2

x

2

(

x

2

+

1

)

d

x


=∫(2+1)2(2+1)

=

d

(

x

2

+

1

)

2

(

x

2

+

1

)


=12ln(2+1)

=

1

2

ln

(

x

2

+

1

)


Now lets solve 1

I

1

,


1=∫1(−1)(2+1)

I

1

=

1

(

x

1

)

(

x

2

+

1

)

d

x


Lets apply the partial fraction decomposition technique


Assuming 1(−1)(2+1)=−1++2+1——(1)

1

(

x

1

)

(

x

2

+

1

)

=

A

x

1

+

B

x

+

C

x

2

+

1

(

1

)


⟹(2+1)+(+)(−1)=1

A

(

x

2

+

1

)

+

(

B

x

+

C

)

(

x

1

)

=

1


At =1

x

=

1


2=1

2

A

=

1


⟹=12

A

=

1

2


At ==−1‾‾‾√

x

=

i

=

1


(+)(−1)=1

(

B

i

+

C

)

(

i

1

)

=

1


−+−−=1

B

+

C

i

B

i

C

=

1


⟹−=0

C

B

=

0


and +=−1

B

+

C

=

1


After solving above two linear equation, we get


=−12

C

=

1

2


=−12

B

=

1

2


After putting value of

A

,

B

, and

C

into equation (1)

(

1

)

and then replacing this partial fraction into 1

I

1

, we get,


1=∫12(−1)−∫+12(2+1)

I

1

=

1

2

(

x

1

)

d

x

x

+

1

2

(

x

2

+

1

)

d

x


=12ln(−1)−∫2(2+1)−∫12(2+1)

=

1

2

ln

(

x

1

)

x

2

(

x

2

+

1

)

d

x

1

2

(

x

2

+

1

)

d

x


=12ln(−1)−∫24(2+1)−12arctan()

=

1

2

ln

(

x

1

)

2

x

4

(

x

2

+

1

)

d

x

1

2

arctan

(

x

)


=12ln(−1)−∫(2+1)4(2+1)−12arctan()

=

1

2

ln

(

x

1

)

d

(

x

2

+

1

)

4

(

x

2

+

1

)

1

2

arctan

(

x

)


=12ln(−1)−14ln(2+1)−12arctan()

=

1

2

ln

(

x

1

)

1

4

ln

(

x

2

+

1

)

1

2

arctan

(

x

)


Now putting the values of 1

I

1

and 2

I

2

into

I

, we get,


=+12ln(2+1)+12ln(−1)−14ln(2+1)−12arctan()+

I

=

x

+

1

2

ln

(

x

2

+

1

)

+

1

2

ln

(

x

1

)

1

4

ln

(

x

2

+

1

)

1

2

arctan

(

x

)

+

C

(

C

is the constant of integration)




Similar questions