Math, asked by Shivax, 1 year ago

Integration secx.log(secx+tanx)dx

Answers

Answered by Swarup1998
20
\boxed{\underline{\textsf{Formulas :}}}

1.\:\small{\bold{\int uvdx = u\int vdx - \int\{\frac{du}{dx}<br />\int vdx\}dx}}

\textsf{where both u and v are functions of x.}

2.\: \small{\bold{\int secx\:dx = log(secx+tanx)+C}}

\textsf{where C is integral constant.}

3.\: \bold{\frac{d(logx)}{dx}=\frac{1}{x}}

\boxed{\underline{\textsf{Solution :}}}

\textsf{Now,}\:\bold{\int secx\:log(secx+tanx)\:dx}

=\bold{log(secx+tanx)\int secx\:dx}

\small{\bold{-\int \{\frac{d}{dx}log(secx+tanx)*\int secx\:dx\}}}

=\small{\bold{log(secx+tanx)*log(secx+tanx)}}

\tiny{\bold{-\int \{ \frac{\frac{d}{dx}(secx+tanx)}{secx+tanx}*log(secx+tanx)\}dx+2C}}

\textsf{where 2C is integral constant.}

=\bold{\{log(secx+tanx)\}^{2}}

\tiny{\bold{-\int \{\frac{secx\:tanx+sec^{2}x}{secx+tanx}*log(secx+tanx)\}dx+2C}}

=\bold{\{log(secx+tanx)\}^{2}}

\tiny{\bold{-\int \{\frac{secx(secx+tanx)}{secx+tanx}*log(secx+tanx)\}dx+2C}}

=\bold{\{log(secx+tanx)\}^{2}}

\bold{-\int secx\:log(secx+tanx)\:dx+2C}

\to \tiny{\bold{2\int secx\:log(secx+tanx)\:dx = \{log(secx+tanx)\}^{2}+2C}}

\to \boxed{\tiny{\bold{\int secx\:log(secx+tanx)\:dx=\frac{1}{2}\{log(secx+tanx)\}^{2}+C}}}

\textsf{which is the required integral.}
Similar questions