Math, asked by king000191, 11 months ago

integration x. log(x+1) dx .
explain in detail.​

Answers

Answered by rajsingh24
59

QUESTION :-

\rm{integration \:x.\: log(x+1) \:dx .}

SOLUTION:-

Use LIATE.(logarithm, inverse, algebraic,tragnometry,exponential ) Accordingly decide u and v. in our case x. log(x+1) so by LIATE take u = log(x+1) and v = x So, integration by parts,

\rm \implies \int vu \: dx = u \int \: vdx -  \: \int[  \frac{du}{dx}  \:  \int \: vdx]dx \\  \rm \implies \:  \int \: log(x + 1)xdx = log(x + 1) \int \: xdx -  \int \: [   \frac{dlog(x + 1)}{dx}  \:  \int \: xdx]dx \:  \\   \rm \implies \: log(x + 1) \frac{x {}^{2} }{2}  -  \frac{1}{2}  -  \int \:  \frac{1}{x + 1} . \frac{x {}^{2} }{ 2}  \: dx \\ \rm  \:  \green \: \tiny{[now \:  \: x + 1 \sqrt{x {}^{2} } , i.e \: divide \: x {}^{2} \: by \: x + 1  \: ]} \\  \rm   \:  \: \tiny[ \: we \: get \: x {}^{2}  = (x - 1)(x + 1) + 1] \: \\   \rm  \implies \: log(x + 1) \:  \frac{x {}^{2} }{2}  \ -  \frac{1}{2}  \int \frac{(x - 1)(x + 1) + 1}{(x + 1)}    .dx \\ \rm  \implies  \: log(x + 1) \:  \frac{x {}^{2} }{2}  -  \frac{1}{2}  \:  \int \:  \frac{(x - 1) \: (x + 1)}{(x + 1)}  +  \frac{1}{x + 1} .dx \\ \rm  \implies  \: log(x + 1) \:  \frac{x {}^{2} }{2}  -  \frac{1}{2}  \:  \int \: \: x - 1 \:  +  \:  \frac{1}{x + 1} .dx \:  \\\rm  \implies \:  log(x + 1) \:  \frac{x {}^{2} }{2}  -  \frac{1}{2}  \:  [ \frac{x {}^{2} }{2 }  - x + log |x + 1|   ] + c \:  \\ \rm\implies { \boxed{log(x + 1) \:  \frac{x {}^{2} }{2} -  \frac{x {}^{2} }{4}  +  \:  \frac{x}{2}   -  \frac{1}{2} \: log |x + 1|  + c }}

Similar questions