Math, asked by halalcom6095, 1 day ago

intregal{sininverse(√x/a+x)dx}

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

\red{\rm :\longmapsto\: \displaystyle\int\rm {sin}^{ - 1} \sqrt{\dfrac{x}{a + x} } \: dx}

Let assume that

{\rm :  \: \longmapsto\:I \:  =  \:  \displaystyle\int\rm {sin}^{ - 1} \sqrt{\dfrac{x}{a + x} } \: dx} -  -  -  - (1)

To evaluate this integral, we use method of Substitution

{\rm :  \: \longmapsto\:Put \:  \sqrt{\dfrac{x}{a + x} } \:  =  \: siny}

\rm :\longmapsto\:\dfrac{x}{a + x}  =  {sin}^{2}y

\rm :\longmapsto\:x = a {sin}^{2}y + x {sin}^{2}y

\rm :\longmapsto\:x - x{sin}^{2}y = a {sin}^{2}y

\rm :\longmapsto\:x(1 - {sin}^{2}y )= a {sin}^{2}y

\rm :\longmapsto\:x{cos}^{2}y = a {sin}^{2}y

\red{\rm :\longmapsto\:x = a {tan}^{2}y}

\red{\rm :\longmapsto\:dx = 2a \: tany \:  {sec}^{2}y \: dy}

So, on substituting all these values in given integral, we get

\rm :\longmapsto\:I = \displaystyle\int\rm y \:  \times  \: 2a \: tany \:  {sec}^{2}y \: dy

\rm \:  =  \: 2a\displaystyle\int\rm y \times tany \:  {sec}^{2}y \: dy

We know, Integration by Parts,

\boxed{ \bf{ \: \displaystyle\int\rm u.v \: dx \:  =  \: u\displaystyle\int\rm vdx - \displaystyle\int\rm \bigg(\dfrac{d}{dx}u \: \displaystyle\int\rm vdx\bigg) dx}}

So, Here,

\red{\rm :\longmapsto\:u = y}

and

\red{\rm :\longmapsto\:v = tany \:  {sec}^{2}y}

So, on substituting the values, we get

\rm \:  =2a\bigg[y\displaystyle\int\rm tany {sec}^{2} ydy - \displaystyle\int\rm \bigg(\dfrac{d}{dy}y \: \displaystyle\int\rm tany {sec}^{2}ydy \bigg) dy\bigg]

Now,

\red{\rm :\longmapsto\:\displaystyle\int\rm tany  \: {sec}^{2}y \: dy =  \dfrac{1}{2} {tan}^{2}y}

and

\red{\rm :\longmapsto\:\dfrac{d}{dy}y = 1}

So, using these values, we get

\rm \:  = 2a\bigg[y\dfrac{ {tan}^{2} y}{2} - \displaystyle\int\rm 1 \times \dfrac{ {tan}^{2} y}{2} \: dy\bigg]

\rm \:  = 2a\bigg[y\dfrac{ {tan}^{2} y}{2} -\dfrac{1}{2} \displaystyle\int\rm ( {sec}^{2} y - 1) \: dy\bigg]

\rm \:  = ay {tan}^{2}y  -a tany  + ay + c

As

\red{\rm :\longmapsto\:x = a {tan}^{2}y\bf\implies \: {tan}^{2}y =  \dfrac{ x}{a}}

So, on substituting all these values, we get

\rm \:  =  \: x {tan}^{ - 1} \sqrt{\dfrac{x}{a} } -  \sqrt{ax} + a{tan}^{ - 1} \sqrt{\dfrac{x}{a} } + c

Hence,

\red{\rm :\longmapsto\: \displaystyle\int\rm {sin}^{ - 1} \sqrt{\dfrac{x}{a + x} } \: dx}

is

\bf \:  =  \: x {tan}^{ - 1} \sqrt{\dfrac{x}{a} } -  \sqrt{ax} + a{tan}^{ - 1} \sqrt{\dfrac{x}{a} } + c

Note :-

Proof of

\red{\rm :\longmapsto\:\displaystyle\int\rm tany  \: {sec}^{2}y \: dy =  \dfrac{1}{2} {tan}^{2}y}

By method of Substitution,

\rm :\longmapsto\:tany = t

\rm :\longmapsto\: {sec}^{2} y  \: dy=d t

So, given integral reduced to

\rm \:  =  \: \displaystyle\int\rm t \: dt

\rm \:  =  \: \dfrac{ {t}^{2} }{2} + c

\rm \:  =  \: \dfrac{ {tan}^{2} t}{2} + c

Answered by oOosnowflakeoOo
2

Step-by-step explanation:

 \frac{ \tan2t}{2}  + c

Similar questions