Physics, asked by disha1454, 6 months ago

Its solution is b... Answer only if u know... pls do not spam​

Attachments:

Answers

Answered by amitkumar44481
91

AnsWer :

B)

To FinD :

 \tt \bullet \:  \:  \:  \:  \:   \dfrac{d}{dx} \bigg \lgroup {x}^{2} .Sin \frac{1}{x}   \bigg\rgroup

SolutioN :

 \tt \bullet \:  \:  \:  \:  \:  y  = {x}^{2} .sin \frac{1}{x}

Now,

> Differentiation Rule.

  • Constant Rule.
  • Product Rule.
  • Quotient Rule.
  • Chain Rule.

Apply Product Rule of Differentiation.

 \tt \longmapsto \:  \:  \:  \:  \:   \dfrac{dy}{dx}  =  \dfrac{d}{dy} \bigg \lgroup {x}^{2} sin \frac{1}{x}   \bigg\rgroup

 \tt \mapsto \:  \:  \:  \:  \:   \dfrac{dy}{dx}  =  \dfrac{d}{dx} \Big({x}^{2}  \Big) .Sin \frac{1}{x}+{x}^{2}. \dfrac{d}{dx} \Big(Sin \frac{1}{x}\Big)

 \tt \mapsto \:  \:  \:  \:  \:   \dfrac{dy}{dx}  =  \dfrac{d}{dx} \Big({x}^{2}  \Big) .Sin \frac{1}{x}+{x}^{2}. \dfrac{d}{dx} \Big(Sin \frac{1}{x}. \frac{1}{x} \Big)

 \tt \mapsto \:  \:  \:  \:  \:   \dfrac{dy}{dx}  =  2x .Sin \frac{1}{x}+{x}^{2}.Cos\frac{1}{x}.\Big( -  \frac{1}{ {x}^{2} } \Big)

 \tt \mapsto \:  \:  \:  \:  \:   \dfrac{dy}{dx}  =  2x .Sin \frac{1}{x} -  \cancel{{x}^{2} }. \frac{1}{ \cancel{ {x}^{2} }} .Cos\frac{1}{x}

 \tt \mapsto \:  \:  \:  \:  \:   \dfrac{dy}{dx}  =  2x .Sin \frac{1}{x} - Cos\frac{1}{x}

Or,

 \tt \mapsto \:  \:  \:  \:  \:   \dfrac{dy}{dx}  =  2xSin\Big(\frac{1}{x}\Big )- Cos\Big(\frac{1}{x}\Big)

Therefore, Option B ) Correct.

_____________________________

MorE InformatioN :

 \tt \bullet \:  \:  \:  \:  \:  y  = Sin^nx.

\tt \dfrac{dy}{dx} = \dfrac{d\,\Big(Sin^nx\Big)}{dx}

\tt \dfrac{dy}{dx} = \dfrac{d\,\Big(Sin^nx\Big)}{dx}.\dfrac{d\,\Big(x\Big)}{dx}

\tt \dfrac{dy}{dx} =n Cos^{n-1}x.1.

\tt \dfrac{dy}{dx} = nCos^{n-1}x.

Answered by Anonymous
290

♣ Qᴜᴇꜱᴛɪᴏɴ :

\large\boxed{\sf{\dfrac{d}{dx}\left(x^2sin\:\dfrac{1}{x}\right)}}

★═════════════════★

♣ ᴀɴꜱᴡᴇʀ :

\boxed{\sf{\dfrac{d}{dx}\left(x^2\sin \left(\dfrac{1}{x}\right)\right)=2x\sin \left(\dfrac{1}{x}\right)-\cos \left(\dfrac{1}{x}\right)}}

★═════════════════★

♣ ᴄᴀʟᴄᴜʟᴀᴛɪᴏɴꜱ :

\mathrm{Apply\:the\:Product\:Rule}:\quad \left(f\cdot g\right)'=f\:'\cdot g+f\cdot g'

f=x^2,\:g=\sin \left(\dfrac{1}{x}\right)

=\dfrac{d}{dx}\left(x^2\right)\sin \left(\dfrac{1}{x}\right)+\dfrac{d}{dx}\left(\sin \left(\dfrac{1}{x}\right)\right)x^2

\sf{Solve\:\:\:\dfrac{d}{dx}\left(x^2\right)}

_______________

\text{Apply the Power Rule:} \\\\\dfrac{d}{d x}\left(x^{a}\right)=a \cdot x^{a-1}$\\\\$=2 x^{2-1}$\\\\Simplify\\\\$=2 x$

_______________

\sf{Solve\:\:\:\dfrac{d}{dx}\left(\sin \left(\dfrac{1}{x}\right)\right)}

_______________

\begin{aligned}&\text { Apply the chain rule: } \cos \left(\frac{1}{x}\right) \frac{d}{d x}\left(\frac{1}{x}\right)\\\\&=\cos \left(\frac{1}{x}\right) \frac{d}{d x}\left(\frac{1}{x}\right)\\\\&\frac{d}{d x}\left(\frac{1}{x}\right)=-\frac{1}{x^{2}}\\\\&=\cos \left(\frac{1}{x}\right)\left(-\frac{1}{x^{2}}\right)\\\\&\text { Simplify } \cos \left(\frac{1}{x}\right)\left(-\frac{1}{x^{2}}\right):-\frac{\cos \left(\frac{1}{x}\right)}{x^{2}}\\\\&=-\frac{\cos \left(\frac{1}{x}\right)}{x^{2}}\end{aligned}

_______________

\sf{=2x\sin \left(\dfrac{1}{x}\right)+\left(-\dfrac{\cos \left(\dfrac{1}{x}\right)}{x^2}\right)x^2}

\boxed{\sf{=2x\sin \left(\dfrac{1}{x}\right)-\cos \left(\dfrac{1}{x}\right)}}

Similar questions