Physics, asked by Anonymous, 11 months ago

its very hard question plz plz solve this. answer:
 \alpha  \beta t \div 2( \alpha  +  \beta )

Attachments:

Answers

Answered by Anonymous
7

\huge\fcolorbox{red}{pink}{Answer} \\  ............................................................\\  \implies \rm \: for \: A \: to \: B \\  \\  \leadsto \rm \: v = u + at \\  \\  \leadsto \rm \: v_{max} = 0 +  \alpha{t_1} \\  \\  \leadsto \rm \:  \blue{t_1 =  \frac{v_{max}}{ \alpha}}  \\ ............................................................ \\  \implies \rm \: for \: B \: to \: C \\  \\  \leadsto \rm \: v = u + at  \\  \\  \leadsto \rm \: 0 = v_{max} -  \beta{t_2} \\  \\  \leadsto \rm \:  \green{t_2 =  \frac{v_{max}}{ \beta}}  \\ ............................................................ \\  \implies \rm \: total \: time \: is \: given \: by \\  \\  \leadsto \rm \: t = t_1 + t_2 \\  \\  \leadsto \rm \: t =  \frac{v_{max}}{ \alpha}  +  \frac{v_{max}}{ \beta}  \\  \\  \leadsto \rm \:  \red{t = v_{max}  \: ( \frac{ \alpha \beta}{ \alpha +  \beta}) } \\............................................................  \\  \implies \rm \: total \: distance \: is \: given \: by \\  \\  \leadsto \rm \: d = ut +  \frac{1}{2} a {t}^{2}  \\  \\  \leadsto \rm \: d = 0 +  \frac{1}{2}  \times  \frac{v_{max}} {t} \times   {t}^{2}  \\  \\  \leadsto \rm \: \orange{ d =  \frac{1}{2}  \times v_{max} \times t} \\  ............................................................\\  \implies \rm \: average \: velocity \: is \: given \: by \\  \\  \leadsto \rm \: v_{av} =  \frac{total \: distance}{total \: time}  \\  \\  \leadsto \rm \: v_{av} =  \frac{ \frac{1}{2}  \times v_{max} \times t \times ( \alpha +  \beta)}{v_{max} \times  \alpha \beta}  \\  ............................................................\\  \therefore  \:  \underline{ \boxed{ \bold{ \rm{ \pink{v_{av} =  \frac{( \alpha +  \beta)t}{ \alpha \beta}}}}}}

Attachments:

nirman95: Explaination at it's best ❤️
Similar questions