Math, asked by ricciannebauzon29, 5 months ago

k2 - 8k + 16 ? perfect square trinomial as the square of a binomial.

Answers

Answered by raotripti10gmailcom
17

Answer:

k2 - 8k +16

= k2 - 4k - 4k + 16

= k (k - 4) -4(k-4)

= (k-4)(k+4)

k=4 , k-4

good morning

Answered by Manmohan04
2

Given,

\[{k^2} - 8k + 16\]

Solution,

Consider the polynomial is \[a{x^2} + bx + c\]

The solution,

\[x = \frac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]

Compare the given equation with standard equation,

\[a = 1,b =  - 8,c = 16\]

\[x = \frac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]

\[ \Rightarrow x = \frac{{ - \left( { - 8} \right) \pm \sqrt {{{\left( { - 8} \right)}^2} - 4 \times 1 \times 16} }}{{2 \times 1}}\]

\[ \Rightarrow x = \frac{{8 \pm \sqrt {64 - 64} }}{2}\]

\[\begin{array}{l} \Rightarrow x = \frac{8}{2}\\ \Rightarrow x = 4\end{array}\]

Hence the value is 4.

Similar questions