Math, asked by Hisoundarya, 7 months ago

Kindly answer this question correctly

Attachments:

Answers

Answered by Anonymous
5

Correct question is

 \rm  \red{ \huge{Question}}

 \rm \implies \dfrac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{5} -  \sqrt{3}  }  = a + b \sqrt{15}  \:  \: then \:  \: show \:  \: that \:  \: a = 4 \:  \: and \:  \: b = 1

\rm  \red{ \huge{Solution}}

 \rm \implies \dfrac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{5} -  \sqrt{3}  }  = a + b \sqrt{15}

Take

 \rm \implies \dfrac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{5} -  \sqrt{3}  }

Using rationalization methods

 \rm \implies \dfrac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{5} -  \sqrt{3}  }   \times  \dfrac{ \sqrt{5  } +  \sqrt{3}  }{ \sqrt{5}  +  \sqrt{3} }

Using this identity

 \rm(a + b) =  {a}^{2}  +  {b}^{2}  + 2ab

 \rm \: (a - b)(a + b) =  {a}^{2}  -  {b}^{2}

 \implies \rm \:  \dfrac{ (\sqrt{5}  +  \sqrt{3} ) {}^{2} }{( \sqrt{5} ) {}^{2}  -  (\sqrt{ 3}) {}^{2}  }

 \rm \implies \dfrac{( \sqrt{5} ) {}^{2} +  (\sqrt{ 3} )  {}^{2}  + 2 \times  \sqrt{5}  +  \sqrt{3} }{5 - 3}

 \rm \implies \dfrac{5 + 3 + 2 \sqrt{15} }{2}

 \rm \implies \dfrac{8 + 2 \sqrt{15} }{2}

 \rm \:  \implies4 +  \sqrt{15}

hence proved

a = 4 and b = 1

Answered by Lueenu22
0

Step-by-step explanation:

\huge\mathfrak{\color{orange}{\underline{\underline{Answer♡}}}}

Answer♡

if you will give thanks to this answer then I will give you 1000 free points .I am promising.

refer the attachment

\huge\underline{ \red{❥L} \green{u}\blue{e} \purple{e} \orange{n}\pink{u}}\:

\huge\green{Thanks}

Attachments:
Similar questions