Physics, asked by dainvincible1, 1 year ago

(l) Two lenses have power of
(a) +2d. (b) -4d

What is the nature and focal length of each lense?

(ll) An object is kept at a distance of 100 cm from each of the above lenses. Calculate
(a) image distance
(b) magnification in each of the two cases.

Answers

Answered by rohitkumargupta
234
HELLO DEAR,

we know that:-

f=1/p

where,

p=power

f = focal length

(1) :-

(a) given that;-

p=+2D

using the the formula

we get,

1/f=2

f=1/2

f=0.5m =50cm


the lens is convex lens of focal length= 0.5m = 50cm


(b) given that;-

p= -4D

using the the formula

we get,

1/f= -4

f= 1/-4

f= -0.25m = -25cm

the lens is concave lens of focal length= -0.25m = -25cm



(2) given that;-

u = -100cm = -1 m
and f=( 0.5m) for first lens

we know that:-

lens Formula

 =  >  \frac{1}{f}  =  \frac{1}{v}  -  \frac{1}{u}
now put the values

we get,

 \frac{1}{0.5}  =  \frac{1}{v}  -  \frac{1}{ - 1}  \\  =  >  \frac{1}{v}  =  \frac{1}{0.5}  -  \frac{1}{1}  \\  =  >  \frac{1}{v}  =  \frac{1  \times 10}{0.5 \times 10}  - 1 \\  =  >  \frac{1}{v}  =  \frac{10}{5}  - 1 \\  =  >  \frac{1}{v} =   2 - 1 = 1  \\  =  > v = 1
and

magnification=

m =  \frac{v}{u}   \\  =  > m=  \frac{1}{ - 1}  =  - 1


(b) for second lens
given that;-

u = -100cm = -1 m

and f= (-0.25m) for second lens

we know that:-

lens Formula


 =  >  \frac{1}{f}  =  \frac{1}{v}  -  \frac{1}{u}
 \frac{1}{ - 0.25}  =  \frac{1}{v}  -  \frac{1}{ - 1}  \\  =  >  \frac{1}{v}  =  \frac{1}{ - 0.25}  - 1 \\  =  >  \frac{1}{v}  =  -  \frac{1 \times 100}{  0.25 \times 100}  - 1 \\  =  >  \frac{1}{v}  =  -  \frac{100}{25}  - 1 \\  =  >  \frac{1}{v}  =  - 4 - 1 =  - 5 \\  =  > v =  -  \frac{1}{5}  =  - 0.2

and

magnification is

m =  \frac{v}{u}  =  \frac{ - 0.2}{ - 1}  \\  =  > m =   + 0.2

I HOPE ITS HELP YOU DEAR,
THANKS
Answered by mindfulmaisel
49

"Magnification, M = 0.2

Solution:

For +2D lens,

we know that power =\frac { 1 }{ focal\quad length } \quad in\quad \left( m \right)

+2D = \frac { 1 }{ f }

F = \frac { 1 }{ 2 } D

F = 0.5m = 50cm (it's a convex lens)

U =  -100cm (using sign conventions)

Using lens formula,

\frac { 1 }{ f } \quad =\quad \frac { 1 }{ v } -\frac { 1 }{ u }

\frac { 1 }{ 50 } \quad =\quad \frac { 1 }{ v } -\frac { 1 }{ -100 }

\frac { 1 }{ 50 } \quad =\quad \frac { 1 }{ v } +\frac { 1 }{ 100 }

\frac { 1 }{ 50 } -\frac { 1 }{ 100 } \quad =\quad \frac { 1 }{ v }

\frac { 1 }{ 100 } =\frac { 1 }{ v }

v=100cm

since v is +ve, the image is real.

Magnification { M }=\frac { v }{ u }

{ M }=\frac { 100 }{ -100 } \quad \quad \quad \Rightarrow M = -1

For -4D lens,

we know that =\frac { 1 }{ focal\quad length } \quad in\quad \left( m \right) -4{ D }=\frac { 1 }{ f }

{ f }=-\frac { 1 }{ 4D }

F = -0.25m = -25cm (it's a concave lens)

U = -100cm (using sign conventions)

Using lens formula,

\frac { 1 }{ f } =\frac { 1 }{ v } -\frac { 1 }{ u }

\frac { 1 }{ -25 } =\frac { 1 }{ v } -\frac { 1 }{ -100 }

\frac { 1 }{ -25 } =\frac { 1 }{ v } +\frac { 1 }{ 100 }

\frac { 1 }{ -25 } -\frac { 1 }{ 100 } =\frac { 1 }{ v }

-4-\frac { 1 }{ 100 } =\frac { 1 }{ v }

\frac { -5 }{ 100 } =\frac { 1 }{ v }

\frac { 1 }{ v } =\frac { -1 }{ 20 }

v=-20cm

since v is -ve, image is virtual.

Magnification { M }=\frac { v }{ u }

{ M }=\frac { -20 }{ -100 }

M = 0.2"

Similar questions