Math, asked by Naresh492003, 1 year ago

let A and B be the subsets of the universal set N, the set of natural number then A'union [(A inverse B)unionB']​

Answers

Answered by Swarup1998
12

Correct question. Let A and B be two subsets of the universal set \mathbb{N}. Then find A'\cup [(A\cap B)\cup B'].

Properties.

We must know some set properties before solving the problem:

  • Commutative property.
  • A\cup B=B\cup A
  • A\cap B=B\cap A

  • Associative property.
  • A\cup (B\cup C)=(A\cup B)\cup C

  • Distributive property.
  • A\cup (B\cap C)=(A\cup B)\cap (A\cup C)

  • Complementation property.
  • A\cup A'=U

  • Set relation.
  • A\cap U=A from A\subset U

Solution.

Now A'\cup [(A\cap B)\cup B']

=A'\cup [B'\cup (A\cap B)]

  • [ commutative property ]

=A'\cup [(B'\cup A)\cap (B'\cup B)

  • [ distributive property ]

=A'\cup [(B'\cup A)\cap \mathbb{N}]

  • [ complementation property ]

=A'\cup (B'\cup A)

  • [ set relation ]

=(B'\cup A)\cup A'

  • [ commutative property ]

=B'\cup (A\cup A')

  • [ associative property ]

=B'\cup \mathbb{N}

  • [ complementation property ]

=\mathbb{N}

Answer. \boxed{A'\cup [(A\cap B)\cup B']=\mathbb{N}}

Answered by Anonymous
2

Answer:

Correct question. Let AA and BB be two subsets of the universal set \mathbb{N}N . Then find A'\cup [(A\cap B)\cup B']A

∪[(A∩B)∪B

] .

Properties.

We must know some set properties before solving the problem:

Commutative property.

A\cup B=B\cup AA∪B=B∪A

A\cap B=B\cap AA∩B=B∩A

Associative property.

A\cup (B\cup C)=(A\cup B)\cup CA∪(B∪C)=(A∪B)∪C

Distributive property.

A\cup (B\cap C)=(A\cup B)\cap (A\cup C)A∪(B∩C)=(A∪B)∩(A∪C)

Complementation property.

A\cup A'=UA∪A

=U

Set relation.

A\cap U=AA∩U=A from A\subset UA⊂U

Solution.

Now A'\cup [(A\cap B)\cup B']A

∪[(A∩B)∪B

]

=A'\cup [B'\cup (A\cap B)]=A

∪[B

∪(A∩B)]

[ commutative property ]

=A'\cup [(B'\cup A)\cap (B'\cup B)=A

∪[(B

∪A)∩(B

∪B)

[ distributive property ]

=A'\cup [(B'\cup A)\cap \mathbb{N}]=A

∪[(B

∪A)∩N]

[ complementation property ]

=A'\cup (B'\cup A)=A

∪(B

∪A)

[ set relation ]

=(B'\cup A)\cup A'=(B

∪A)∪A

[ commutative property ]

=B'\cup (A\cup A')=B

∪(A∪A

)

[ associative property ]

=B'\cup \mathbb{N}=B

∪N

[ complementation property ]

=\mathbb{N}=N

Answer. \boxed{A'\cup [(A\cap B)\cup B']=\mathbb{N}}

A

∪[(A∩B)∪B

]=N

Similar questions