let A and B be the subsets of the universal set N, the set of natural number then A'union [(A inverse B)unionB']
Answers
Correct question. Let and be two subsets of the universal set . Then find .
Properties.
We must know some set properties before solving the problem:
- Commutative property.
- Associative property.
- Distributive property.
- Complementation property.
- Set relation.
- from
Solution.
Now
- [ commutative property ]
- [ distributive property ]
- [ complementation property ]
- [ set relation ]
- [ commutative property ]
- [ associative property ]
- [ complementation property ]
Answer.
Answer:
Correct question. Let AA and BB be two subsets of the universal set \mathbb{N}N . Then find A'\cup [(A\cap B)\cup B']A
′
∪[(A∩B)∪B
′
] .
Properties.
We must know some set properties before solving the problem:
Commutative property.
A\cup B=B\cup AA∪B=B∪A
A\cap B=B\cap AA∩B=B∩A
Associative property.
A\cup (B\cup C)=(A\cup B)\cup CA∪(B∪C)=(A∪B)∪C
Distributive property.
A\cup (B\cap C)=(A\cup B)\cap (A\cup C)A∪(B∩C)=(A∪B)∩(A∪C)
Complementation property.
A\cup A'=UA∪A
′
=U
Set relation.
A\cap U=AA∩U=A from A\subset UA⊂U
Solution.
Now A'\cup [(A\cap B)\cup B']A
′
∪[(A∩B)∪B
′
]
=A'\cup [B'\cup (A\cap B)]=A
′
∪[B
′
∪(A∩B)]
[ commutative property ]
=A'\cup [(B'\cup A)\cap (B'\cup B)=A
′
∪[(B
′
∪A)∩(B
′
∪B)
[ distributive property ]
=A'\cup [(B'\cup A)\cap \mathbb{N}]=A
′
∪[(B
′
∪A)∩N]
[ complementation property ]
=A'\cup (B'\cup A)=A
′
∪(B
′
∪A)
[ set relation ]
=(B'\cup A)\cup A'=(B
′
∪A)∪A
′
[ commutative property ]
=B'\cup (A\cup A')=B
′
∪(A∪A
′
)
[ associative property ]
=B'\cup \mathbb{N}=B
′
∪N
[ complementation property ]
=\mathbb{N}=N
Answer. \boxed{A'\cup [(A\cap B)\cup B']=\mathbb{N}}
A
′
∪[(A∩B)∪B
′
]=N