let A and B be two any positive integers then there exist a unique integers q and R such that a=bq+ r if b = 5 then find the possible values r.
Answers
Answered by
13
Solution :
_____________________________________________________________
Given :
"a" and "b" are two any positive integers then there exist a unique integers q and R such that a=bq+ r ,.
_____________________________________________________________
To Find :
if b = 5 then find the possible values r.
_____________________________________________________________
We know that,
Each Positive values of a & b (If they are positive integers such that, a > b),.
It can be expressed in the form,
⇒ a = bq + r where a > b > r ≥ 0
Hence,.
The possible values of "r" are : b > r ≥0 = {0, 1 , 2 , 3, ,4}
_____________________________________________________________
Hope it Helps !!
⇒ Mark as Brainliest,.
_____________________________________________________________
Given :
"a" and "b" are two any positive integers then there exist a unique integers q and R such that a=bq+ r ,.
_____________________________________________________________
To Find :
if b = 5 then find the possible values r.
_____________________________________________________________
We know that,
Each Positive values of a & b (If they are positive integers such that, a > b),.
It can be expressed in the form,
⇒ a = bq + r where a > b > r ≥ 0
Hence,.
The possible values of "r" are : b > r ≥0 = {0, 1 , 2 , 3, ,4}
_____________________________________________________________
Hope it Helps !!
⇒ Mark as Brainliest,.
Similar questions