Let A be a 3x3 matrix which has determinant 3 and satisfies the equation A^2-7A +4I= 0.Find the
value of |det(A-2I)|
Answers
Answered by
7
Answer:
A^2–7A+4I=0
A^2–4A+4(I*I)=3A [I*I=I]
A^2–2*A*2I+(2I)^2=3A
(A-2I)^2=3A
Det (A-2I)^2= Det (3A)
Det(A-2I)*Det(A-2I)= 27Det(A) [Det(cA) = c^n*Det(A), n= order of matrix.]
Det (A-2I)=(27*3)^0.5
Det (A-2I) = 9 [Det (A-2I) >=Det (A)+ Det (-2I) , Det (A-2I) >= Det (A)- 8 Det of (I), Det (A-2I) >=3–8,Det (A-2I) >=-5]
Det (A-2I) =9.
Step-by-step explanation:
Answered by
1
Answer:3x3=9
Step-by-step explanation:Study hard
Similar questions
Physics,
6 months ago
English,
6 months ago
Hindi,
11 months ago
Chemistry,
1 year ago
Social Sciences,
1 year ago