let ABCD be a quadrilateral with area 18 with side AB parallel to side CD and AB =2CD. let AD be perpendicular to AB and CD .if a circle is drawn inside the quadrilateral ABCD touching all the sides then it's radius is ?
Answers
Answered by
2
Let CD=xCD=x then AB=2CD=2xAB=2CD=2x.Let rr be the radius of the circle inscribed in the quadrilateral ABCD.
Given: Area of quadrilateral ABCD=1818and ABis||ABis|| to CDCD.
⇒12⇒12(x+2x).2r=18(x+2x).2r=18
⇒3xr=18⇒3xr=18
⇒xr=6⇒xr=6-----(1)
OP=OM=PD=OQ=AM=rOP=OM=PD=OQ=AM=r
⇒PC=x−randMB=2x−r⇒PC=x−randMB=2x−r
Let ∠PCO=angleOCQ=θ∠PCO=angleOCQ=θ then from right-angled ΔOPCΔOPC
tanθ=OPCP=rx−rtanθ=OPCP=rx−r-----(2)
CD∥ABCD∥AB
∴∠PCB=∠QOM=2θ∴∠PCB=∠QOM=2θ
Step 2:
∠CBA=180∘−2θ∠CBA=180∘−2θ
∠OBM=90∘−θ∠OBM=90∘−θ
⇒⇒ From ΔOMB,tan(90∘−θ)=OMMB=r2x−rΔOMB,tan(90∘−θ)=OMMB=r2x−r
From right angled ΔOBMΔOBM
tanθ=2x−rrtanθ=2x−rr-----(3)
From (2) & (3)
rx−r=2x−rrrx−r=2x−rr
⇒2x2−3xr=0⇒2x2−3xr=0
x(2x−3r)=0x(2x−3r)=0
x=3r2x=3r2-------(4)
From (1) & (4) we get,
xr=6xr=6
3rr2=3rr2=66
r2=4r2=4
r=2
Given: Area of quadrilateral ABCD=1818and ABis||ABis|| to CDCD.
⇒12⇒12(x+2x).2r=18(x+2x).2r=18
⇒3xr=18⇒3xr=18
⇒xr=6⇒xr=6-----(1)
OP=OM=PD=OQ=AM=rOP=OM=PD=OQ=AM=r
⇒PC=x−randMB=2x−r⇒PC=x−randMB=2x−r
Let ∠PCO=angleOCQ=θ∠PCO=angleOCQ=θ then from right-angled ΔOPCΔOPC
tanθ=OPCP=rx−rtanθ=OPCP=rx−r-----(2)
CD∥ABCD∥AB
∴∠PCB=∠QOM=2θ∴∠PCB=∠QOM=2θ
Step 2:
∠CBA=180∘−2θ∠CBA=180∘−2θ
∠OBM=90∘−θ∠OBM=90∘−θ
⇒⇒ From ΔOMB,tan(90∘−θ)=OMMB=r2x−rΔOMB,tan(90∘−θ)=OMMB=r2x−r
From right angled ΔOBMΔOBM
tanθ=2x−rrtanθ=2x−rr-----(3)
From (2) & (3)
rx−r=2x−rrrx−r=2x−rr
⇒2x2−3xr=0⇒2x2−3xr=0
x(2x−3r)=0x(2x−3r)=0
x=3r2x=3r2-------(4)
From (1) & (4) we get,
xr=6xr=6
3rr2=3rr2=66
r2=4r2=4
r=2
Attachments:
sparsh4119:
good luck ....u both
Similar questions