Math, asked by vishalpalwal17, 2 days ago

Let f : [0, 1] → R be a continuous function such that f(x) = f( (3) √3 x), ∀x ∈ [0, 1]. Show that f is a constant function.​

Answers

Answered by valancardoza
0

Answer:

Correct options are B) and C)

f(x)=1−2x+∫

o

x

e

x−t

f(t)dt

⇒e

−x

f(x)=e

−x

(1−2x)+∫

o

x

e

−t

f(t)dt

Differentiate w.r.t.x.

−e

−x

f(x)+e

−x

f

(x)=−e

−x

(1−2x)+e

−x

(−2)+e

−x

f(x)

⇒−f(x)+f

(x)=−(1−2x)−2+f(x)

⇒f

(x)−2f(x)=2x−3

Integrating factor =e

−2x

f(x)⋅e

−2x

=∫e

−2x

(2x−3)dx

=(2x−3)∫e

−2x

dx−∫((2)∫e

−2x

dx)dx

=

−2

(2x−3)e

−2x

2

e

−2x

+c

f(x)=

−2

2x−3

2

1

+ce

2x

f(0)=

2

3

2

1

+c=1⇒c=0

∴f(x)=1−x

Area =

4

π

2

1

=

4

π−2

Similar questions