Math, asked by srikarvedanabatla96, 11 months ago

let f(x) =x^2+3x+4/x^2+5x+4 then solve inequality

Answers

Answered by bharatsighmar
1

Answer:

let f(x) =x^2+3x+4/x^2+5x+4 then solve inequality

Step-by-step explanation:

let f(x) =x^2+3x+4/x^2+5x+4 then solve a

Answered by vinod04jangid
1

Answer:The solution of inequality is that the roots are 7 and -9 respectively

Step-by-step explanation:

Given:We have given f(x) = \frac{x^2+3x+4}{x^2+5x+4}

To find:We have to find the inequality.

Explanation:

Step 1: Let f(x) =\frac{x^2+3x+4}{x^2+5x+4} = \beta

⇒                   x^{2}  + 3x + 4 =  \beta(x^2+5x+4)

⇒                    x^{2}  + 3x + 4 = x^{2} γ+ 5xγ +

⇒  x^{2} \beta+ 5x\beta + 4\beta - ( x^{2}  + 3x + 4 ) = 0

⇒     x^{2} \beta+ 5x\beta + 4\beta  -x^{2}  -3x -4 = 0  

⇒              x^{2}( \beta-1)+x(5\beta-3)+(4\beta-4) = 0

Step 2:We know that for 'x' to be real,

                    D0

Where D=b^{2} -4ac

Step 3:On solving we get,

⇒             (5\beta -3)^{2} -4(\beta -1)(4\beta -4)= 0

⇒   (5\beta )^{2} -2(5\beta )(3)+(3)^{2} -4(4\beta ^{2} -4\beta -4\beta +4)= 0

⇒          25\beta ^{2} -30\beta +9-4(4\beta ^{2} -8\beta +4)= 0

⇒         25\beta ^{2} -30\beta+9-16\beta ^{2}+32\beta -16= 0

⇒         25\beta ^{2} -16\beta ^{2} -30\beta +32\beta +9-16= 0

⇒                                          9\beta ^{2} +2\beta -7= 0

Step 4:Since 'D' for the above quadratic equation is positive.So roots of quadratic equation can be given by,

                 x_{+} =\frac{-b+\sqrt{b^{2}-4ac } }{2} and x_{-} =\frac{-b-\sqrt{b^{2}-4ac } }{2}

Step 5:on solving x_{+} and x_{-} we get,

       x_{+} =\frac{-(2)+\sqrt{2^{2}-4(9)(-7) } }{2}

       x_{+}= \frac{-2+\sqrt{4+252} }{2}

       x_{+} =\frac{-2+\sqrt{256} }{2}

       x_{+}=\frac{-2+(16)}{2}

       x_{+}=\frac{14}{2}

       x_{+}=7

and

x_{-} =\frac{-(2)-\sqrt{2^{2}-4(9)(-7) } }{2}

x_{-} =\frac{-(2)-\sqrt{2^{2}-4(9)(-7) } }{2}

x_{-}= \frac{-2-\sqrt{4+252} }{2}

x_{-} =\frac{-2-\sqrt{256} }{2}

x_{-}=\frac{-2-(16)}{2}

x_{-}=\frac{-18}{2}

x_{-}=-9

Hence, the roots of above quadratic equation are 7 and -9 respectively.

∴∈(7,-9).

#SPJ2

Solve equation 7x-5/3x-5=9​

https://brainly.in/question/28565124

solve the inequality .

4x(x²-1)(x+3)²(x+2)>= 0

https://brainly.in/question/41883324

       

         

Similar questions