Math, asked by Shipri1575, 1 year ago

Let p and q be two real numbers with p > 0. Show that the cubic x3 + px + q has exactly one
real root

Answers

Answered by Shaizakincsem
0

Thank you for asking this question. Here is your answer:

We will Let f(x) = x³ + px + q

f'(x) = 3x²+p which is greater than zero.  

We can conclude form this that f is the increasing function here.

x tends to minus infinity f(x) = - infinity

x tends to infinity f(x)= infinity  

So we can say that there is only 1 real root.

If there is any confusion please leave a comment below.


Similar questions