. Let tn denote the number of integral sided triangle with distinct sides chosen from {1, 2, 3, , , ,n). Then
t20 - t10 equals
Answers
Answer:
t20 - t10 = 470
t20 - t19 = 81
Step-by-step explanation:
as sides are integral
Hence with Shortest side = 1 no triangle can exist
then
side = 2 , 17 Triangles can exists
(3 , 4) , (4 , 5) ..................................................(19 , 20)
Side = 3
(4 , 5) ( 4, 6) , (5 , 6) , (5 , 7)............................................(18 , 19) , (18 , 20) , (19 , 20)
31 Triangles
Side = 4
(5 , 6) , (5 , 7) , (5 , 8) .............................................................(17 , 18),(17, 19) , (17 , 20) , (18 , 19) , (18 , 20) , (19 , 20)
= 42 Triangles
Side = 5 = 50 triangles
Side = 6 = 55 triangles
Side = 7 = 57 triangles
Side = 8 = 56 triangles
Side = 9 = 52 triangles
Side = 10 = 45 triangles
Side = 11 = 36 triangles
Side 12 = 28 triangles
Side 13 = 21 triangles
Side 14 = 15 triangles
Side 15 = 10 triangles
Side 16 = 6 triangles
Side 17 = 3 triangles
Side 18 = 1 triangles
Total Triangles = 17 + 31 + 42 + 50 + 55 + 57 + 56 + 52 +45 + 36 + 28 + 21 + 15 + 10 + 6 + 3 + 1
= 525
Similarly for n = 10
7 + 11 + 12 + 10 + 6 + 3 + 1 = 55 Triangles
t20 - t10 = 525 - 55 = 470
t19
16 + 29 + 39 + 46 + 50 + 51 + 49 + 44 + 36 + 28 + 21 + 15 + 10 + 6 + 3 + 1
Similarly t19 = 444
t20 - t19 = 525 - 444 = 81 Triangles
Formula derived by induction :
(a - 1) (n + 1 - 2*a) + (a - 2)(a-1)/2 ( this formula hold true until 2a < n + 1)
then it beomes (n - a)(n-a-1)/2
a = shortest side