Math, asked by atharva6080, 1 year ago

Let U = {x / x = 2", n E W, n<8) be the universal set.<br />A = {yly = 4", n E W, n<4}<br />B = {zız = 8", n E W,n<2}<br />then find (i) A' (ii) B' (iii) (A n B)'.​

Answers

Answered by shadowsabers03
4

Question:

Let  U=\{x\mid x=2^n,\ n\in\mathbb{W},\ n&lt;8\}  be the universal set.

There exists two sets    such that,

A=\{y\mid y=4^n,\ n\in\mathbb{W},\ n&lt;4\}

B=\{z\mid z=8^n,\ n\in\mathbb{W},\ n&lt;2\}

Then find,

(i)\ \ A'\\ \\ (ii)\ \ B'\\ \\ (iii)\ \ (A\cap B)'

\cline{1-}

[Note:  \mathbb{W}  is the set of whole numbers.]

\mathbb{W}=\{w\mid w\in\mathbb{Z},\ w\geq 0\}\ \vee\ \mathbb{W}=\mathbb{N}\cup \{0\}

\cline{1-}

We can write the sets U, A and B in another way, but in set builder notation.

\begin{aligned}&amp;U=\{x\mid x=2^n,\ n\in\mathbb{W},\ n&lt;8\}\\ \\ \Longrightarrow\ \ &amp;U=\{x\mid x=2^n,\ n\in C=\{0,\ 1,\ 2,\ 3,\ 4,\ 5,\ 6,\ 7\}\}\end{aligned}

\begin{aligned}&amp;A=\{y\mid y=4^n,\ n\in\mathbb{W},\ n&lt;4\}\\ \\ \Longrightarrow\ \ &amp;A=\{y\mid y=(2^2)^n,\ n\in\mathbb{W},\ n&lt;4\}\\ \\ \Longrightarrow\ \ &amp;A=\{y\mid y=2^{2n},\ n\in\mathbb{W},\ n&lt;4\}\\ \\ \\ \textsf{Let}\ \ &amp;2n=k.\ \ n\in\mathbb{W}\ \wedge\ n&lt;4\ \Rightarrow\ n\in\{0,\ 1,\ 2,\ 3\}\ \Rightarrow\ k\in\{0,\ 2,\, 4,\ 6\}\\ \\ \\ \therefore\ \ \ \ &amp;A=\{y\mid y=2^k,\ k\in D=\{0,\ 2,\ 4,\ 6\}\}\end{aligned}

\begin{aligned}&amp;B=\{z\mid z=8^n,\ n\in\mathbb{W},\ n&lt;2\}\\ \\ \Longrightarrow\ \ &amp;B=\{z\mid z=(2^3)^n,\ n\in\mathbb{W},\ n&lt;2\}\\ \\ \Longrightarrow\ \ &amp;B=\{z\mid z=2^{3n},\ n\in\mathbb{W},\ n&lt;2\}\\ \\ \\ \textsf{Let}\ \ &amp;3n=m.\ \ n\in\mathbb{W}\ \wedge\ n&lt;2\ \Rightarrow\ n\in\{0,\ 1\}\ \Rightarrow\ m\in\{0,\ 3\}\\ \\ \\ \therefore\ \ \ \ &amp;B=\{z\mid z=2^m,\ m\in E=\{0,\ 3\}\}\end{aligned}

Now,

\begin{aligned}(i)\ \ &amp;A'=U-A\\ \\ &amp;A'=\{a\mid a=2^p,\ p\in (C-D)\}\\ \\ &amp;A'=\{a\mid a=2^p,\ p\in\{1,\ 3,\ 5,\ 7\}\}\\ \\ &amp;A'=\{a\mid a=2^p,\ p=2u-1,\ u\in\mathbb{N},\ u\leq 4\}\\ \\ \\ (ii)\ \ &amp;B'=U-B\\ \\ &amp;B'=\{b\mid b=2^q,\ q\in(C-E)\}\\ \\ &amp;B'=\{b\mid b=2^q,\ q\in\{1,\ 2,\ 4,\ 5,\ 6,\ 7\}\}\\ \\ &amp;B'=\{b\mid b=2^q,\ q\in\mathbb{N},\ q\leq 7,\ q\neq 3\}\end{aligned}

\begin{aligned}(iii)\ \ &amp;(A\cap B)'=A'\cup B'\\ \\ &amp;(A\cap B)'=\{c\mid c=2^r,\ r\in\{1,\ 2,\ 3,\ 4,\ 5,\ 6,\ 7\}\}\\ \\ &amp;(A\cap B)'=\{c\mid c=2^r,\ r\in\mathbb{N},\ r\leq 7\}\end{aligned}

Similar questions