Math, asked by anithabaskula, 6 hours ago

lim x-1 logx/x-1
find the correct solution for it​

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{x \to 1}\rm  \frac{logx}{x - 1}

If we substitute directly x = 1, we get

\rm \:  =  \: \dfrac{log1}{1 - 1}

\rm \:  =  \: \dfrac{0}{0}

which is indeterminant form

So,

\rm :\longmapsto\:\displaystyle\lim_{x \to 1}\rm  \frac{logx}{x - 1}

To evaluate this limit, we use Method of Substitution

So, Substitute

 \purple{\rm :\longmapsto\:x = 1 + y}

\rm\implies \:as \: x \to \: 1 \:  \: so \: y \to \: 0

So, above expression can be rewritten as

\rm \:  =  \: \displaystyle\lim_{y \to 0}\rm  \frac{log(1 + y)}{1 + y - 1}

\rm \:  =  \: \displaystyle\lim_{y \to 0}\rm  \frac{log(1 + y)}{y}

\rm \:  =  \: 1

Hence,

 \\ \purple{\rm\implies \:\boxed{\tt{ \:  \:  \:  \displaystyle\lim_{x \to 1}\rm  \frac{logx}{x - 1} = 1 \:  \:  \: }}} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

 \\ \purple{\rm\implies \:\boxed{\tt{ \:  \:  \:  \displaystyle\lim_{x \to 0}\rm  \frac{sinx}{x} = 1 \:  \:  \: }}} \\

 \\ \purple{\rm\implies \:\boxed{\tt{ \:  \:  \:  \displaystyle\lim_{x \to 0}\rm  \frac{tanx}{x} = 1 \:  \:  \: }}} \\

 \\ \purple{\rm\implies \:\boxed{\tt{ \:  \:  \:  \displaystyle\lim_{x \to 0}\rm  \frac{log(1 + x)}{x} = 1 \:  \:  \: }}} \\

 \\ \purple{\rm\implies \:\boxed{\tt{ \:  \:  \:  \displaystyle\lim_{x \to 0}\rm  \frac{ {e}^{x}  - 1}{x} = 1 \:  \:  \: }}} \\

 \\ \purple{\rm\implies \:\boxed{\tt{ \:  \:  \:  \displaystyle\lim_{x \to 0}\rm  \frac{ {a}^{x}  - 1}{x} = loga\:  \:  \: }}} \\

Answered by sayeedasarasavadatti
2

Step-by-step explanation:

plz mark me as brainlist

Attachments:
Similar questions