lim x exten to 0 tanx-x/xsquaretqnx
Answers
Answered by
0
Answer:
limx→0x2tanxtanx−x
=limx→0x2sec2x+2xtanxsec2x−1
∵ Applying L' Hospital's Rule.
=limx→02x2sec2xtanx+2csec2x+2xsec2x+2tanx2sec2xtanx
=limx→02x2(2sec4x+4sec2xtanx)+4xsec2xtanx+4sec2x+8xsec2xtanx+2sec2x2sec2x+4sec2xtanx
=limx→02x2(2sec2x+4sec2xtanx)+12xsec
Answered by
1
my instagram id Abhijeet sharma 5204
Similar questions