Math, asked by kritikkritik691, 7 hours ago

lim x tends to 1
pls koi jaldi se bata do​

Attachments:

Answers

Answered by mathdude500
20

\large\underline{\sf{Given \:Question - }}

Evaluate the following

\rm :\longmapsto\:\displaystyle\lim_{x \to 1}\rm \bigg( \dfrac{ {x}^{2}  - 2}{ {x}^{2}  - x} +  \frac{1}{ {x}^{3}  -  3{x}^{2}  + 2x} \bigg)

 \green{\large\underline{\sf{Solution-}}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{x \to 1}\rm \bigg( \dfrac{ {x}^{2}  - 2}{ {x}^{2}  - x} +  \frac{1}{ {x}^{3}  -  3{x}^{2}  + 2x} \bigg)

If we substitute directly x = 1, we get

\rm \:  =  \: \dfrac{1 - 2}{1 - 1}  - \dfrac{1}{1 - 3 + 2}

\rm \:  =  \: \dfrac{ - 1}{0}  - \dfrac{1}{0}

\rm \:  =  \:  -  \infty  -  \infty

which is indeterminant form

So, Consider

\rm :\longmapsto\:\displaystyle\lim_{x \to 1}\rm \bigg( \dfrac{ {x}^{2}  - 2}{ {x}^{2}  - x} +  \frac{1}{ {x}^{3}  -  3{x}^{2}  + 2x} \bigg)

can be rewritten as

\rm \:  =  \: \displaystyle\lim_{x \to 1}\rm\bigg( \dfrac{ {x}^{2} - 2 }{x(x - 1)}  - \dfrac{1}{x( {x}^{2}  - 3x + 2)} \bigg)

\rm \:  =  \: \displaystyle\lim_{x \to 1}\rm\bigg( \dfrac{ {x}^{2} - 2 }{x(x - 1)}  - \dfrac{1}{x( {x}^{2}  - 2x - x + 2)} \bigg)

\rm \:  =  \: \displaystyle\lim_{x \to 1}\rm\bigg( \dfrac{ {x}^{2} - 2 }{x(x - 1)}  - \dfrac{1}{x[x(x - 2) - 1(x - 2)]} \bigg)

\rm \:  =  \: \displaystyle\lim_{x \to 1}\rm\bigg( \dfrac{ {x}^{2} - 2 }{x(x - 1)}  - \dfrac{1}{x(x - 2)(x - 1)} \bigg)

\rm \:  =  \: \displaystyle\lim_{x \to 1}\rm\bigg( \dfrac{({x}^{2} - 2)(x - 2) - 1}{x(x - 1)(x - 2)} \bigg)

\rm \:  =  \: \displaystyle\lim_{x \to 1}\rm\bigg( \dfrac{{x}^{3} - {2x}^{2} -   2x + 4 - 1}{x(x - 1)(x - 2)} \bigg)

\rm \:  =  \: \displaystyle\lim_{x \to 1}\rm\bigg( \dfrac{{x}^{3} -{2x}^{2} -   2x + 3}{x(x - 1)(x - 2)} \bigg)

\rm \:  =  \: \displaystyle\lim_{x \to 1}\rm\bigg( \dfrac{(x - 1)( {x}^{2}  - x - 3)}{x(x - 1)(x - 2)} \bigg)

[ Factorize using Long Division See Note Section Below]

\rm \:  =  \: \displaystyle\lim_{x \to 1}\rm\bigg( \dfrac{ {x}^{2}  - x - 3}{x(x - 2)} \bigg)

\rm \:  =  \: \dfrac{1 - 1 - 3}{1(1 - 2)}

\rm \:  =  \: \dfrac{ - 3}{ - 1}

\rm \:  =  \: 3

Hence,

 \red{\rm :\longmapsto\:\displaystyle\lim_{x \to 1}\rm \bigg( \dfrac{ {x}^{2}  - 2}{ {x}^{2}  - x} +  \frac{1}{ {x}^{3}  -  3{x}^{2}  + 2x} \bigg) = 3}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Note :-

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{}}}&{\underline{\sf{\:\: {x}^{2} - x - 3\:\:}}}\\ {\underline{\sf{x - 1}}}& {\sf{\: {x}^{3}  -  {2x}^{2} - 2x + 3\:\:}} \\{\sf{}}& \underline{\sf{ \:  \: -  {x}^{3} + \: {x}^{2}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:\:}} \\ {{\sf{}}}& {\sf{\: \:  \:  \:  \:  \:  \:  \:  \:  \:    \: \: -  {x}^{2} - 2x + 3  \:  \:  \:  \:   \:  \:  \:  \:\:}} \\{\sf{}}& \underline{\sf{\:\: \:  \:  \:  \:  \:  \:  \:  {x}^{2}  - x  \:  \:  \:  \:  \:  \: \:\:}} \\ {\underline{\sf{}}}& {\sf{\:\: \:  \:  \:  \:  \:  \:  \:  \:  \:  - 3x + 3  \:\:}} \\{\sf{}}& \underline{\sf{\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:3x  - 3\:\:}} \\ {\underline{\sf{}}}& {\sf{\:\: \:  \: \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:   \: 0\:\:}}  \end{array}\end{gathered}\end{gathered}\end{gathered}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to Know

\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{sinx}{x} = 1 \: }}

\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{tanx}{x} = 1 \: }}

\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{log(1 + x)}{x} = 1 \: }}

\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{ {e}^{x}  - 1}{x} = 1 \: }}

\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{ {a}^{x}  - 1}{x} = loga \: }}

Similar questions