Limit x tends to 0 try to solve this
Answers
Answer:
1) Depends on n
In fact, the limit is:
- √(1+√2) - √2 ≈ 0.14, for n = 0;
- 1 / 4√2≈ 0.18, for n > 0;
- 0, for n < 0.
Step-by-step explanation:
If n = 0, then this is constant for x≠0, so the limit is simply that constant value of √(1+√2) - √2 ≈ 0.14.
For n ≠ 0, evaluate as follows.
Two times, multiply numerator and denominator by a "conjugate" to get rid of some square root signs by "difference of squares".
( √( 1 + √( 1 + xⁿ ) ) - √2 ) / xⁿ
[ first one ]
= ( √( 1 + √( 1 + xⁿ ) ) - √2 )( √( 1 + √( 1 + xⁿ ) ) + √2 ) / xⁿ(√( 1 + √( 1 + xⁿ ) ) + √2 )
[ difference of squares in numerator ]
= ( ( 1 + √( 1 + xⁿ ) ) - 2 ) / xⁿ(√( 1 + √( 1 + xⁿ ) ) + √2 )
[ tidy it up ]
= ( √( 1 + xⁿ ) ) - 1 ) / xⁿ(√( 1 + √( 1 + xⁿ ) ) + √2 )
[ second one ]
= ( √( 1 + xⁿ ) ) - 1 )( √( 1 + xⁿ ) ) + 1 ) / xⁿ(√( 1 + √( 1 + xⁿ ) ) + √2 )( √( 1 + xⁿ ) ) + 1 )
[ difference of squares in numerator ]
= ( 1 + xⁿ - 1 ) / xⁿ(√( 1 + √( 1 + xⁿ ) ) + √2 )( √( 1 + xⁿ ) ) + 1 )
[ tidy it up ]
= xⁿ / xⁿ(√( 1 + √( 1 + xⁿ ) ) + √2 )( √( 1 + xⁿ ) ) + 1 )
= 1 / (√( 1 + √( 1 + xⁿ ) ) + √2 )( √( 1 + xⁿ ) ) + 1 ) ... (*)
Now letting x -> 0, we see that for n > 0, this tends to:
1 / (√( 1 + √( 1 + 0 ) ) + √2 )( √( 1 + 0 ) ) + 1 )
= 1 / (√(1+1) + √2 )( 1 + 1 )
= 1 / ( 2√2 ) ( 2 )
= 1 / 4√2
However, for n < 0, the denominator in (*) tends to ∞, so the limit is 0.