Math, asked by bhumisharma78, 1 year ago

limit X tends to 3 x square minus 3 upon X square + 3 root 3 x minus 12

Attachments:

ravikant108: send the pic of question
bhumisharma78: i hv sent

Answers

Answered by MaheswariS
18

Answer:

\bf\displaystyle\lim_{x\to\sqrt{3}}\:\frac{x^2-3}{x^2+3\sqrt{3}-12}=\frac{2}{5}

Step-by-step explanation:

Given:

\displaystyle\lim_{x\to\sqrt{3}}\:\frac{x^2-3}{x^2+3\sqrt{3}-12}

=\displaystyle\lim_{x\to\sqrt{3}}\:\frac{x^2-{\sqrt3}^2}{x^2+3\sqrt{3}-12}

Using \boxed{a^2-b^2=(a-b)(a+b)}

=\displaystyle\lim_{x\to\sqrt{3}}\:\frac{(x-{\sqrt3})(x+{\sqrt3})}{(x+4{\sqrt3})(x-{\sqrt3})}

=\displaystyle\lim_{x\to\sqrt{3}}\:\frac{x+{\sqrt3}}{x+4{\sqrt3}}

=\frac{{\sqrt3}+{\sqrt3}}{{\sqrt3}+4{\sqrt3}}

=\frac{2{\sqrt3}}{5{\sqrt3}}

=\frac{2}{5}

\implies\boxed{\bf\displaystyle\lim_{x\to\sqrt{3}}\:\frac{x^2-3}{x^2+3\sqrt{3}-12}=\frac{2}{5}}

Answered by fairyprincesssweetie
1

Answer:

ur answer is here

Attachments:
Similar questions