Math, asked by bhavabni, 1 year ago

log x base root3=4 then x=

Answers

Answered by surendarrajawat
40
Hey
log x
 log_{ \sqrt{3} }(x)  = 4 \\ x =  \sqrt{3} ^{4}   \\ x =( ( \sqrt{3} ) ^{2} ) ^{2}  \\ x =  {3}^{2} \\ x = 9
Answer.

Hope it helps #))
Answered by payalchatterje
1

Answer:

Required value of x is

 {3}^{ \frac{1}{8} }

Step-by-step explanation:

Given,

 log_{x}( \sqrt{3} )  = 4

We know,

 log_{a}(b)  = c \\ b =  {a}^{c}

So,

 log_{x}( \sqrt{3} )  = 4 \\  {x}^{4}  =  \sqrt{3}  \\ x =  {( \sqrt{3}) }^{ \frac{1}{4} }  \\ x =  {3}^{ { \frac{1}{2} }^{ \frac{1}{4} } }  \\ x =  {3}^{ \frac{1}{2}  \times  \frac{1}{4} }  \\ x =  {3}^{ \frac{1}{8} } Some important Logarithm formulas,

log_{x}(1)  = 0\\log_{x}(0)  = 1\\log_{x}(y)  =  \frac{ log(x) }{ log(y) } \\log( {x}^{y} )  = y log(x) \\log(x)  +  log(y)  =  log(xy) \\log(x)  -  log(y)  =  log( \frac{x}{y} ) \\  log_{x}(x)  = 1

Similar questions